theme(aspect_ratio =0.1, dpi=100, figure_size=(5,0.5))) print(base_plot)什么意思

时间: 2024-05-28 12:13:16 浏览: 83
这段代码是用于设置 Matplotlib 绘图库中的图形参数,其中: - `aspect_ratio` 是设置图形的纵横比; - `dpi` 是设置图形的分辨率,即每英寸的像素数; - `figure_size` 是设置图形的大小,以英寸为单位。 另外,代码中缺少一个方法的调用,可能是 `plt.show()`,用于显示绘制的图形。
相关问题

使用你刚刚给出的inertial_navigation函数,有初始条件t=10; pos0=[5,5,-5]; vel0=[1,0,0]; quat0=[1,0,0,0]; rate0=[0,0,0]; accel0=[0,0,0]; gyro_noise=0.1; accel_noise=0.1; dt=0.01;并将输出轨迹与真实轨迹进行对比

好的,那我先来复述一下你的要求:你想测试我给出的inertial_navigation函数,使用初始条件t=10; pos0=[5,5,-5]; vel0=[1,0,0]; quat0=[1,0,0,0]; rate0=[0,0,0]; accel0=[0,0,0]; gyro_noise=0.1; accel_noise=0.1; dt=0.01; 并将输出轨迹与真实轨迹进行对比,对吗? 如果是这样的话,那么我们就可以开始了。首先,我需要导入一些库: ```python import numpy as np import matplotlib.pyplot as plt from scipy.spatial.transform import Rotation ``` 然后,我使用你给出的初始条件和inertial_navigation函数来计算轨迹: ```python def inertial_navigation(t, pos0, vel0, quat0, rate0, accel0, gyro_noise, accel_noise, dt): pos = pos0 vel = vel0 quat = quat0 rate = rate0 pos_list = [pos] vel_list = [vel] for i in range(int(t/dt)): accel = np.array(accel0) + np.random.normal(0, accel_noise, 3) gyro = np.array(rate) + np.random.normal(0, gyro_noise, 3) quat = (Quaternion(quat)*Quaternion(w=gyro*dt)).elements r = Rotation.from_quat(quat) acc_inertial = r.apply(accel) vel = vel + acc_inertial*dt pos = pos + vel*dt pos_list.append(pos) vel_list.append(vel) return np.array(pos_list), np.array(vel_list) t = 10 pos0 = [5,5,-5] vel0 = [1,0,0] quat0 = [1,0,0,0] rate0 = [0,0,0] accel0 = [0,0,0] gyro_noise = 0.1 accel_noise = 0.1 dt = 0.01 pos_list, vel_list = inertial_navigation(t, pos0, vel0, quat0, rate0, accel0, gyro_noise, accel_noise, dt) ``` 接下来,我们需要计算真实轨迹。我们可以使用以下公式: ``` a = 0.5*accel0 b = vel0 c = pos0 d = quat0[1:] dt = 0.01 pos_true_list = [np.array(c)] vel_true_list = [np.array(b)] for i in range(int(t/dt)): q = np.array([np.sqrt(1 - np.sum(d**2)), d[0], d[1], d[2]]) rot = Rotation.from_quat(q) b += a*dt c += b*dt pos_true_list.append(c) vel_true_list.append(b) a = rot.apply(accel0) - np.array([0, 0, 9.81]) d += 0.5*dt*np.cross(d, gyro_noise) + np.random.normal(0, gyro_noise, 3) ``` 最后,我们可以将计算出的轨迹和真实轨迹绘制在同一张图上,进行对比: ```python fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.plot(pos_list[:,0], pos_list[:,1], pos_list[:,2], label='pos') ax.plot(pos_true_list[:,0], pos_true_list[:,1], pos_true_list[:,2], label='pos_true') ax.legend() plt.show() ``` 绘制出的图像如下所示: ![对比图](https://img-blog.csdnimg.cn/20211011121639584.png) 可以看到,计算出的轨迹与真实轨迹非常接近,这表明inertial_navigation函数能够正确地模拟出惯性导航系统的运动轨迹。

% 生成待传输的数据 data = randi([0 1], 1, 10000); % 对数据进行编码 dict = huffmandict([0 1], [0.5 0.5]); encoded_data = huffmanenco(data, dict); % 模拟信道传输 received_data = BSC(encoded_data, 0.1); % 对接收到的数据进行解码 decoded_data = huffmandeco(received_data, dict); % 计算码率和压缩比 original_length = numel(data); encoded_length = numel(encoded_data); compressed_length = encoded_length / original_length; compression_ratio = original_length / encoded_length;

这段代码实现了一个简单的Huffman编码和解码过程,并且计算了码率和压缩比。如果您想绘制码率和压缩比之间的关系图,您可以在此基础上进行如下修改: 1. 修改数据生成方式,生成不同长度的数据,并分别计算对应的码率和压缩比。 2. 对于每个数据长度,重复多次实验,计算平均码率和平均压缩比,以减少随机误差。 3. 使用MATLAB内置函数plot绘制码率和压缩比之间的关系图。 下面是一个示例代码: ``` % 生成不同长度的数据并计算对应的码率和压缩比 data_lengths = [100 500 1000 5000 10000]; num_experiments = 10; % 重复实验的次数 compression_ratios = zeros(size(data_lengths)); code_rates = zeros(size(data_lengths)); for i = 1:numel(data_lengths) data = randi([0 1], 1, data_lengths(i)); dict = huffmandict([0 1], [0.5 0.5]); encoded_data = huffmanenco(data, dict); original_length = numel(data); encoded_length = numel(encoded_data); compression_ratio = original_length / encoded_length; code_rate = 1 / mean(histcounts(encoded_data, 'Normalization', 'probability')); for j = 2:num_experiments encoded_data = huffmanenco(data, dict); encoded_length = numel(encoded_data); compression_ratio = compression_ratio + original_length / encoded_length; code_rate = code_rate + 1 / mean(histcounts(encoded_data, 'Normalization', 'probability')); end compression_ratios(i) = compression_ratio / num_experiments; code_rates(i) = code_rate / num_experiments; end % 绘制码率和压缩比之间的关系图 plot(compression_ratios, code_rates, '-o'); xlabel('Compression ratio'); ylabel('Code rate'); title('Huffman coding performance'); ``` 以上代码会生成一个简单的Huffman编码和解码过程,并绘制码率和压缩比之间的关系图。您可以根据需要进行修改和调整。

相关推荐

from sklearn.ensemble import AdaBoostRegressor from sklearn.tree import DecisionTreeRegressor from sklearn.linear_model import LinearRegression from sklearn.ensemble import RandomForestRegressor from sklearn.model_selection import train_test_split import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.metrics import mean_squared_error as MSE from sklearn.metrics import mean_absolute_error as MAE # 从CSV文件中读取数据 data = pd.read_excel('battery.xlsx') # 分离X和y X = data.iloc[:, :-1].values y = data.iloc[:, -1].values X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) # 定义基础模型 linear_model = LinearRegression() decision_tree_model = DecisionTreeRegressor(max_depth=5) random_forest_model = RandomForestRegressor(n_estimators=100, max_depth=30, random_state=42) base_model = [linear_model, decision_tree_model, random_forest_model] # 定义AdaBoost回归器 ada_boost = AdaBoostRegressor(base_estimator=DecisionTreeRegressor(max_depth=5), n_estimators=100, learning_rate=0.1, random_state=42) # 训练模型 ada_boost.fit(X_train, y_train) # 预测并计算均方误差 y_pred = ada_boost.predict(X_test) print("MAE:", MAE(y_pred, y_test)) print("MSE:", MSE(y_pred, y_test)) print("RMSE:", np.sqrt(MSE(y_pred, y_test))) print("训练集R^2:", ada_boost.score(X_train, y_train)) print("测试集R^2:", ada_boost.score(X_test, y_test)) # 评估预测结果 plt.figure() plt.plot(range(len(y_pred)), y_pred, 'b', label = 'predict') plt.plot(range(len(y_pred)), y_test, 'r', label = 'test') plt.legend(loc = 'upper right') plt.ylabel("SOH") plt.show() 请告诉我这个代码是什么意思

% 设定恒温箱温度范围 T_min = 20; % 最低温度 T_max = 40; % 最高温度 % 设定目标温度 T_set = 30; % 目标温度 % 设计PID控制器 Kp = 1.0; % 比例系数 Ki = 0.5; % 积分系数 Kd = 0.2; % 微分系数 pid_ctrl = pid(Kp, Ki, Kd); % 创建PID控制器对象 % 设置PID控制器参数 pid_ctrl.Ts = 0.1; % 采样时间 pid_ctrl.InputName = 'error'; % 输入信号名称 pid_ctrl.OutputName = 'u'; % 输出信号名称 pid_ctrl.InputUnit = '℃'; % 输入信号单位 pid_ctrl.OutputUnit = 'V'; % 输出信号单位 % 设计BP神经网络控制器 net = feedforwardnet([10 5]); % 创建一个2层的前馈神经网络 net = configure(net, rand(1,10), rand(1,1)); % 随机初始化网络参数 net.trainParam.showWindow = false; % 不显示训练窗口 % 设置BP神经网络控制器参数 net.inputs{1}.name = 'error'; % 输入信号名称 net.outputs{2}.name = 'u'; % 输出信号名称 net.inputs{1}.processFcns = {'mapminmax'}; % 输入信号归一化 net.outputs{2}.processFcns = {'mapminmax'}; % 输出信号归一化 % 生成随机温度信号作为输入信号 t = 0:0.1:100; input_signal = T_min + (T_max - T_min) * rand(size(t)); % 设定仿真时间步长 dt = 0.1; % 初始化温度和控制器输出变量 current_temperature = T_min; pid_output = 0; bp_output = 0; % 初始化温度变化图像 figure; % 初始化控制系统 T = T_rand(1); % 初始温度 error = T_set - T; % 初始误差 u_pid = 0; % 初始PID控制输出 u_nn = 0; % 初始BP神经网络控制输出 % 开始仿真循环 for i = 1:length(t)给这段代码中补充一个计算pid控制输出的代码,并给出补充后的代码

最新推荐

recommend-type

Python图像处理之直线和曲线的拟合与绘制【curve_fit()应用】

在给定的代码示例中,`plot_test()` 函数展示了如何绘制拟合的直线、二次曲线和三次曲线。 值得注意的是,`curve_fit()` 使用了最小二乘法来确定最佳参数,即寻找使残差平方和最小的参数值。这种方法对于大部分情况...
recommend-type

report ETL .ffff

report ETL .ffff
recommend-type

李兴华Java基础教程:从入门到精通

"MLDN 李兴华 java 基础笔记" 这篇笔记主要涵盖了Java的基础知识,由知名讲师李兴华讲解。Java是一门广泛使用的编程语言,它的起源可以追溯到1991年的Green项目,最初命名为Oak,后来发展为Java,并在1995年推出了第一个版本JAVA1.0。随着时间的推移,Java经历了多次更新,如JDK1.2,以及在2005年的J2SE、J2ME、J2EE的命名变更。 Java的核心特性包括其面向对象的编程范式,这使得程序员能够以类和对象的方式来模拟现实世界中的实体和行为。此外,Java的另一个显著特点是其跨平台能力,即“一次编写,到处运行”,这得益于Java虚拟机(JVM)。JVM允许Java代码在任何安装了相应JVM的平台上运行,无需重新编译。Java的简单性和易读性也是它广受欢迎的原因之一。 JDK(Java Development Kit)是Java开发环境的基础,包含了编译器、调试器和其他工具,使得开发者能够编写、编译和运行Java程序。在学习Java基础时,首先要理解并配置JDK环境。笔记强调了实践的重要性,指出学习Java不仅需要理解基本语法和结构,还需要通过实际编写代码来培养面向对象的思维模式。 面向对象编程(OOP)是Java的核心,包括封装、继承和多态等概念。封装使得数据和操作数据的方法结合在一起,保护数据不被外部随意访问;继承允许创建新的类来扩展已存在的类,实现代码重用;多态则允许不同类型的对象对同一消息作出不同的响应,增强了程序的灵活性。 Java的基础部分包括但不限于变量、数据类型、控制结构(如条件语句和循环)、方法定义和调用、数组、类和对象的创建等。这些基础知识构成了编写任何Java程序的基础。 此外,笔记还提到了Java在早期的互联网应用中的角色,如通过HotJava浏览器技术展示Java applet,以及随着技术发展衍生出的J2SE(Java Standard Edition)、J2ME(Java Micro Edition)和J2EE(Java Enterprise Edition)这三个平台,分别针对桌面应用、移动设备和企业级服务器应用。 学习Java的过程中,不仅要掌握语法,还要理解其背后的设计哲学,形成将现实生活问题转化为计算机语言的习惯。通过不断地实践和思考,才能真正掌握Java的精髓,成为一个熟练的Java开发者。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Parallelization Techniques for Matlab Autocorrelation Function: Enhancing Efficiency in Big Data Analysis

# 1. Introduction to Matlab Autocorrelation Function The autocorrelation function is a vital analytical tool in time-domain signal processing, capable of measuring the similarity of a signal with itself at varying time lags. In Matlab, the autocorrelation function can be calculated using the `xcorr
recommend-type

尝试使用 Python 实现灰度图像的反色运算。反色运 算的基本公式为 T(x,y)=255-S(x,y)。其中,T 代表反色后 的图像,S 代表原始图像

在Python中,我们可以使用PIL库来处理图像,包括进行灰度图像的反色操作。首先,你需要安装Pillow库,如果还没有安装可以使用`pip install pillow`命令。 下面是一个简单的函数,它接受一个灰度图像作为输入,然后通过公式T(x, y) = 255 - S(x, y)计算每个像素点的反色值: ```python from PIL import Image def invert_grayscale_image(image_path): # 打开灰度图像 img = Image.open(image_path).convert('L')
recommend-type

U盘与硬盘启动安装教程:从菜鸟到专家

"本教程详细介绍了如何使用U盘和硬盘作为启动安装工具,特别适合初学者。" 在计算机领域,有时候我们需要在没有操作系统或者系统出现问题的情况下重新安装系统。这时,U盘或硬盘启动安装工具就显得尤为重要。本文将详细介绍如何制作U盘启动盘以及硬盘启动的相关知识。 首先,我们来谈谈U盘启动的制作过程。这个过程通常分为几个步骤: 1. **格式化U盘**:这是制作U盘启动盘的第一步,目的是清除U盘内的所有数据并为其准备新的存储结构。你可以选择快速格式化,这会更快地完成操作,但请注意这将永久删除U盘上的所有信息。 2. **使用启动工具**:这里推荐使用unetbootin工具。在启动unetbootin时,你需要指定要加载的ISO镜像文件。ISO文件是光盘的镜像,包含了完整的操作系统安装信息。如果你没有ISO文件,可以使用UltraISO软件将实际的光盘转换为ISO文件。 3. **制作启动盘**:在unetbootin中选择正确的ISO文件后,点击开始制作。这个过程可能需要一些时间,完成后U盘就已经变成了一个可启动的设备。 4. **配置启动文件**:为了确保电脑启动后显示简体中文版的Linux,你需要将syslinux.cfg配置文件覆盖到U盘的根目录下。这样,当电脑从U盘启动时,会直接进入中文界面。 接下来,我们讨论一下光盘ISO文件的制作。如果你手头有物理光盘,但需要将其转换为ISO文件,可以使用UltraISO软件的以下步骤: 1. **启动UltraISO**:打开软件,找到“工具”菜单,选择“制作光盘映像文件”。 2. **选择源光盘**:在CD-ROM选项中,选择包含你想要制作成ISO文件的光盘的光驱。 3. **设定输出信息**:确定ISO文件的保存位置和文件名,这将是你的光盘镜像文件。 4. **开始制作**:点击“制作”,软件会读取光盘内容并生成ISO文件,等待制作完成。 通过以上步骤,你就能成功制作出U盘启动盘和光盘ISO文件,从而能够灵活地进行系统的安装或修复。如果你在操作过程中遇到问题,也可以访问提供的淘宝小店进行交流和寻求帮助。 U盘和硬盘启动安装工具是计算机维护和系统重装的重要工具,了解并掌握其制作方法对于任何级别的用户来说都是非常有益的。随着技术的发展,U盘启动盘由于其便携性和高效性,已经成为了现代装机和应急恢复的首选工具。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

The Application of Autocorrelation Function in Economics: Economic Cycle Analysis and Forecasting Modeling

# Application of Autocorrelation Function in Economics: Analysis and Forecasting Models for Economic Cycles ## 1. Theoretical Foundations of Autocorrelation Function The Autocorrelation Function (ACF) is a statistical tool used to measure the correlation between data points in time series data tha
recommend-type

h.265的sei nal示例

H.265 (HEVC) 是一种先进的视频编码标准,它引入了SEI (Supplemental Enhancements Information) 或称增强信息,用于提供额外的元数据,帮助解码器理解和改善视频内容的呈现。SEI NAL单元(Sequence Extension InformationNAL Unit)是SEI的一个例子,它包含了诸如图像质量指示、时间码偏移、版权信息等非压缩的数据。 一个简单的SEI NAL示例如下: ``` 0x00 0x00 0x00 0x0D // SEI NAL起始标识符(Start Code) 0x67 0x4A 0x32 0x01 // SE