把一个卷积函数写成一个类
时间: 2024-03-14 21:47:52 浏览: 85
基于卷积神经网络的手写数字识别系统的设计与实现1.pdf
好的,以下是一个简单的卷积函数的类实现:
```python
class Convolution:
def __init__(self, kernel_size, stride):
self.kernel_size = kernel_size
self.stride = stride
def forward(self, input_tensor, weight_tensor, bias_tensor):
batch_size, in_channels, in_height, in_width = input_tensor.shape
out_channels, _, kernel_height, kernel_width = weight_tensor.shape
# 计算输出张量的大小
out_height = int((in_height - kernel_height) / self.stride) + 1
out_width = int((in_width - kernel_width) / self.stride) + 1
# 初始化输出张量
output_tensor = np.zeros((batch_size, out_channels, out_height, out_width))
# 进行卷积计算
for b in range(batch_size):
for c_out in range(out_channels):
for h_out in range(out_height):
for w_out in range(out_width):
# 计算输入张量中的每个窗口
h_start = h_out * self.stride
h_end = h_start + kernel_height
w_start = w_out * self.stride
w_end = w_start + kernel_width
window = input_tensor[b, :, h_start:h_end, w_start:w_end]
# 计算卷积结果
output_tensor[b, c_out, h_out, w_out] += np.sum(window * weight_tensor[c_out]) + bias_tensor[c_out]
return output_tensor
```
这个类接收三个参数,分别为卷积核的大小、步长以及输入张量、权重张量和偏置张量。它实现了前向传递函数,计算输入张量和权重张量的卷积,并加上偏置张量,最后返回计算结果的输出张量。
阅读全文