编程实现用邻接矩阵存储的图的最小生成树Prim算法
时间: 2023-06-11 12:09:28 浏览: 86
Prim算法计算最小生成树(无向图&邻接矩阵)_算法_数据结构_
5星 · 资源好评率100%
下面是使用邻接矩阵存储的图的最小生成树Prim算法的Python代码实现:
```python
import sys
class Graph():
def __init__(self, vertices):
self.V = vertices
self.graph = [[0 for column in range(vertices)] for row in range(vertices)]
def printMST(self, parent):
print("Edge\tWeight")
for i in range(1, self.V):
print(parent[i], "-", i, "\t", self.graph[i][parent[i]])
def minKey(self, key, mstSet):
min = sys.maxsize
for v in range(self.V):
if key[v] < min and mstSet[v] == False:
min = key[v]
min_index = v
return min_index
def primMST(self):
key = [sys.maxsize] * self.V
parent = [None] * self.V
key[0] = 0
mstSet = [False] * self.V
parent[0] = -1
for cout in range(self.V):
u = self.minKey(key, mstSet)
mstSet[u] = True
for v in range(self.V):
if self.graph[u][v] > 0 and mstSet[v] == False and key[v] > self.graph[u][v]:
key[v] = self.graph[u][v]
parent[v] = u
self.printMST(parent)
# 测试代码
g = Graph(5)
g.graph = [[0, 2, 0, 6, 0],
[2, 0, 3, 8, 5],
[0, 3, 0, 0, 7],
[6, 8, 0, 0, 9],
[0, 5, 7, 9, 0]]
g.primMST()
```
这个算法的时间复杂度为O(V^2),其中V是图中节点的数量。
阅读全文