matlab列主元消去法

时间: 2023-11-28 18:45:26 浏览: 108
以下是使用MATLAB实现列主元消去法的代码和注释: ```matlab % 定义矩阵A和向量b A = [1, 2, 3; 2, 5, 2; 6, 1, 1]; b = [6; 1; 0]; % 列主元消去法 n = length(b); for k = 1:n-1 % 选取主元素 [~, p] = max(abs(A(k:n, k))); p = p + k - 1; % 交换行 if p ~= k A([k, p], :) = A([p, k], :); b([k, p]) = b([p, k]); end % 消元 for i = k+1:n m = A(i, k) / A(k, k); A(i, k+1:n) = A(i, k+1:n) - m * A(k, k+1:n); b(i) = b(i) - m * b(k); end end % 回带求解 x = zeros(n, 1); x(n) = b(n) / A(n, n); for i = n-1:-1:1 x(i) = (b(i) - A(i, i+1:n) * x(i+1:n)) / A(i, i); end % 输出结果 disp('矩阵A:'); disp(A); disp('向量b:'); disp(b); disp('解向量x:'); disp(x); ```
相关问题

matlab列主元消去法法

列主元消去法是一种用于求解线性方程组的方法。它是高斯消去法的改进版本,通过选择每一次消去的列主元素来避免出现零主元的情况。 该方法的基本思想是:将线性方程组的增广矩阵进行初等行变换,使得矩阵的主元素为列主元素,并将主元所在的列的下方元素全部归零。具体步骤如下: 1. 初始化:将增广矩阵表示为[A|B]的形式,其中A是系数矩阵,B是常数矩阵。 2. 对于矩阵A的第i列,寻找第i行之后的所有元素中绝对值最大的元素,记作A(j,i)。交换第i行和第j行,确保主元素出现在第i行。 3. 对于每一行k(k=1,2,...,n-1)执行以下操作: a. 计算倍数m,其中m=A(k+1,i)/A(i,i)。 b. 第k+1行减去第i行的m倍。 4. 重复步骤2和步骤3,直到完成了对所有主元所在列的操作。 5. 到这一步时,增广矩阵的形式变为了上三角矩阵。 6. 通过回代法求解方程组。从最后一行开始,逐步求解每个未知数的值。 列主元消去法的优点在于可以避免出现零主元的情况,从而导致无法继续计算的问题。同时,它还可以消减计算误差,提高解的精度。然而,该方法的计算复杂度较高,对于大型线性方程组来说,效率可能较低。 总之,列主元消去法是一种可行的方法,用于求解线性方程组,尤其适用于需要高精度解或含有较小主元的情况。

MATLAB列主元消去法代码

在MATLAB中,我们可以使用内置的`lu()`函数来执行列主元消元法(也称为LU分解),这是一种求解线性系统的方法。以下是使用`lu()`函数的基本步骤和示例代码: ```matlab % 创建一个系数矩阵 A = [3 1 4; 2 5 6; 7 8 9]; % 这是一个3x3的例子 % 使用lu()函数进行LU分解,返回L(下三角矩阵)和U(上三角矩阵) [L, U] = lu(A); % 检查结果是否为LU分解 disp('L matrix:'); disp(L); disp('U matrix:'); disp(U); ``` 当你运行这段代码后,`L`矩阵将包含下三角部分(左乘可保持方程组解不变),而`U`矩阵将包含上三角部分(行主元)。对于解决线性方程组`Ax=b`,你可以这样做: 1. 对于`b`向量(右侧常数项),计算`y = L \ b`。 2. 计算`x = U \ y`。 注意,`lu()`函数会直接改变原始矩阵`A`的存储形式,所以在调用前最好先复制一份原始矩阵。
阅读全文

相关推荐

最新推荐

recommend-type

使用matlab高斯消去法、列主元高斯消去法计算n阶线性方程组

在MATLAB代码中,列主元高斯消去法的实现包括: 1. 同样设定n和矩阵A、b,然后在每一步消去之前,找到当前列的最大绝对值元素所在的位置u。 2. 交换最大元所在行与当前行,确保A(k,k)是当前列的最大元素。 3. 执行...
recommend-type

matlab列主元消去法(高斯消去法)

在MATLAB中实现列主元消去法,我们可以创建一个名为`DelGAuss`的函数,如文件中所示。这个函数接受两个参数,即系数矩阵`A`和常数向量`B`。首先,我们需要获取矩阵`A`的尺寸`n`和`m`,以及向量`B`的长度`nB`。在实际...
recommend-type

列主元Gauss消去法解方程组及matlab代码实现

以下是列主元Gauss消去法的详细步骤和MATLAB代码实现的解析。 1. **算法描述**: - **输入**:系数矩阵`A`和右端项向量`b`。 - **预处理**:计算矩阵的阶数`n`。 - **主循环**(对`k=1,2,...,n-1`): - **...
recommend-type

【java】ssm+jsp+mysql+LD算法在线考试系统.zip

【java】ssm+jsp+mysql+LD算法在线考试系统
recommend-type

降低成本的oracle11g内网安装依赖-pdksh-5.2.14-1.i386.rpm下载

资源摘要信息: "Oracle数据库系统作为广泛使用的商业数据库管理系统,其安装过程较为复杂,涉及到多个预安装依赖包的配置。本资源提供了Oracle 11g数据库内网安装所必需的预安装依赖包——pdksh-5.2.14-1.i386.rpm,这是一种基于UNIX系统使用的命令行解释器,即Public Domain Korn Shell。对于Oracle数据库的安装,pdksh是必须的预安装组件,其作用是为Oracle安装脚本提供命令解释的环境。" Oracle数据库的安装与配置是一个复杂的过程,需要诸多组件的协同工作。在Linux环境下,尤其在内网环境中安装Oracle数据库时,可能会因为缺少某些关键的依赖包而导致安装失败。pdksh是一个自由软件版本的Korn Shell,它基于Bourne Shell,同时引入了C Shell的一些特性。由于Oracle数据库对于Shell脚本的兼容性和可靠性有较高要求,因此pdksh便成为了Oracle安装过程中不可或缺的一部分。 在进行Oracle 11g的安装时,如果没有安装pdksh,安装程序可能会报错或者无法继续。因此,确保pdksh已经被正确安装在系统上是安装Oracle的第一步。根据描述,这个特定的pdksh版本——5.2.14,是一个32位(i386架构)的rpm包,适用于基于Red Hat的Linux发行版,如CentOS、RHEL等。 运维人员在进行Oracle数据库安装时,通常需要下载并安装多个依赖包。在描述中提到,下载此依赖包的价格已被“打下来”,暗示了市场上其他来源可能提供的费用较高,这可能是因为Oracle数据库的软件和依赖包通常价格不菲。为了降低IT成本,本文档提供了实际可行的、经过测试确认可用的资源下载途径。 需要注意的是,仅仅拥有pdksh-5.2.14-1.i386.rpm文件是不够的,还要确保系统中已经安装了正确的依赖包管理工具,并且系统的软件仓库配置正确,以便于安装rpm包。在安装rpm包时,通常需要管理员权限,因此可能需要使用sudo或以root用户身份来执行安装命令。 除了pdksh之外,Oracle 11g安装可能还需要其他依赖,如系统库文件、开发工具等。如果有其他依赖需求,可以参考描述中提供的信息,点击相关者的头像,访问其提供的其他资源列表,以找到所需的相关依赖包。 总结来说,pdksh-5.2.14-1.i386.rpm包是Oracle 11g数据库内网安装过程中的关键依赖之一,它的存在对于运行Oracle安装脚本是必不可少的。当运维人员面对Oracle数据库安装时,应当检查并确保所有必需的依赖组件都已准备就绪,而本文档提供的资源将有助于降低安装成本,并确保安装过程的顺利进行。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

云计算术语全面掌握:从1+X样卷A卷中提炼精华

![云计算术语全面掌握:从1+X样卷A卷中提炼精华](https://ask.qcloudimg.com/http-save/yehe-1475574/696453895d391e6b0f0e27455ef79c8b.jpeg) # 摘要 本文全面解析了云计算的基础概念,并深入理解了云计算服务模型,包括IaaS、PaaS和SaaS的区别及其应用。文章详细探讨了云计算部署模型,包括公有云、私有云及混合云的架构优势和选择策略。同时,本文也实践应用了云计算的关键技术,如虚拟化、容器技术以及云安全策略。此外,文章探讨了云服务管理与监控的工具、最佳实践、性能监控以及合规性和可持续发展问题。最后,本文通
recommend-type

. 索读取⼀幅图像,让该图像拼接⾃身图像,分别⽤⽔ 平和垂直 2 种。要求运⾏结果弹窗以⾃⼰的名字全拼命名。

在Python中,我们可以使用PIL(Pillow)库来处理图像并实现您所描述的功能。首先,你需要安装PIL库,如果还没有安装,可以使用pip install pillow命令。以下是简单的步骤来实现这个功能: 1. 打开图像文件: ```python from PIL import Image def open_image_and_display(image_path): img = Image.open(image_path) ``` 2. 创建一个新的空白图像,用于存放拼接后的图像: ```python def create_concat_image(img, directi
recommend-type

Java基础实验教程Lab1解析

资源摘要信息:"Java Lab1实践教程" 本次提供的资源是一个名为"Lab1"的Java实验室项目,旨在帮助学习者通过实践来加深对Java编程语言的理解。从给定的文件信息来看,该项目的名称为"Lab1",它的描述同样是"Lab1",这表明这是一个基础的实验室练习,可能是用于介绍Java语言或设置一个用于后续实践的开发环境。文件列表中的"Lab1-master"表明这是一个主版本的压缩包,包含了多个文件和可能的子目录结构,用于确保完整性和便于版本控制。 ### Java知识点详细说明 #### 1. Java语言概述 Java是一种高级的、面向对象的编程语言,被广泛用于企业级应用开发。Java具有跨平台的特性,即“一次编写,到处运行”,这意味着Java程序可以在支持Java虚拟机(JVM)的任何操作系统上执行。 #### 2. Java开发环境搭建 对于一个Java实验室项目,首先需要了解如何搭建Java开发环境。通常包括以下步骤: - 安装Java开发工具包(JDK)。 - 配置环境变量(JAVA_HOME, PATH)以确保可以在命令行中使用javac和java命令。 - 使用集成开发环境(IDE),如IntelliJ IDEA, Eclipse或NetBeans,这些工具可以简化编码、调试和项目管理过程。 #### 3. Java基础语法 在Lab1中,学习者可能需要掌握一些Java的基础语法,例如: - 数据类型(基本类型和引用类型)。 - 变量的声明和初始化。 - 控制流语句,包括if-else, for, while和switch-case。 - 方法的定义和调用。 - 数组的使用。 #### 4. 面向对象编程概念 Java是一种面向对象的编程语言,Lab1项目可能会涉及到面向对象编程的基础概念,包括: - 类(Class)和对象(Object)的定义。 - 封装、继承和多态性的实现。 - 构造方法(Constructor)的作用和使用。 - 访问修饰符(如private, public)的使用,以及它们对类成员访问控制的影响。 #### 5. Java标准库使用 Java拥有一个庞大的标准库,Lab1可能会教授学习者如何使用其中的一些基础类和接口,例如: - 常用的java.lang包下的类,如String, Math等。 - 集合框架(Collections Framework),例如List, Set, Map等接口和实现类。 - 异常处理机制,包括try-catch块和异常类层次结构。 #### 6. 实验室项目实践 实践是学习编程最有效的方式之一。Lab1项目可能包含以下类型的实际练习: - 创建一个简单的Java程序,比如一个控制台计算器。 - 实现基本的数据结构和算法,如链表、排序和搜索。 - 解决特定的问题,比如输入处理和输出格式化。 #### 7. 项目组织和版本控制 "Lab1-master"文件名暗示该项目可能采用Git作为版本控制系统。在项目实践中,学习者可能需要了解: - 如何使用Git命令进行版本控制。 - 分支(Branch)的概念和合并(Merge)的策略。 - 创建和管理Pull Request来协作和审查代码。 #### 8. 代码规范和文档 良好的代码规范和文档对于保持代码的可读性和可维护性至关重要。Lab1项目可能会强调: - 遵循Java编码标准,例如命名约定、注释习惯。 - 编写文档注释(Javadoc),以便自动生成API文档。 通过Lab1项目的实践和指导,学习者能够逐步掌握Java编程语言的核心知识,并为后续更深入的学习和项目开发打下坚实的基础。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依