gauss列主元消去法matlab
时间: 2023-11-13 08:53:46 浏览: 365
在Matlab中,可以使用“[L,U,P]=lu(A)”函数来实现列主元高斯消元法,其中A为系数矩阵,L为下三角矩阵,U为上三角矩阵,P为置换矩阵。具体实现代码如下:
A = [1,2,3;4,5,6;7,8,9];
[L,U,P] = lu(A);
disp(L);
disp(U);
disp(P);
相关问题
Gauss 列主元消去法的matlab代码
以下是Gauss列主元消去法的Matlab代码:
function [x, L, U] = gauss_pivot(A, b)
% GAUSS_PIVOT Performs Gauss elimination with partial pivoting
% on augmented matrix A|b.
% Returns the solution vector x, the lower triangular matrix L,
% and the upper triangular matrix U.
%
% Usage: [x, L, U] = gauss_pivot(A, b)
%
% Note: This code does not check for singularity or near-singularity.
%
% Example:
% A = [1 2 -3; 4 5 6; 7 8 9];
% b = [5; 7; 9];
% [x, L, U] = gauss_pivot(A, b);
% Get size of augmented matrix
[n,~] = size(A);
% Initialize L and U
L = eye(n);
U = A;
% Perform Gauss elimination with partial pivoting
for k = 1:n-1
% Find row r in columns k through n of U with largest magnitude
[~,r] = max(abs(U(k:n,k)));
r = r + k - 1;
% Swap rows k and r of U and b
temp = U(k,:);
U(k,:) = U(r,:);
U(r,:) = temp;
temp = b(k);
b(k) = b(r);
b(r) = temp;
% Swap rows k and r of L
if k > 1
temp = L(k,1:k-1);
L(k,1:k-1) = L(r,1:k-1);
L(r,1:k-1) = temp;
end
% Perform elimination
for i = k+1:n
L(i,k) = U(i,k)/U(k,k);
for j = k:n
U(i,j) = U(i,j) - L(i,k)*U(k,j);
end
b(i) = b(i) - L(i,k)*b(k);
end
end
% Solve for x using backward substitution
x = zeros(n,1);
x(n) = b(n)/U(n,n);
for i = n-1:-1:1
x(i) = (b(i) - U(i,i+1:n)*x(i+1:n))/U(i,i);
end
end
Gauss消去法MATLAB程序实现及原理 Guass列主元消去法MATLAB程序实现及原理
Gauss消元法(也称为高斯消元法)是一种线性代数中解决线性系统(即Ax = b)的经典方法。其基本原理是通过一系列行操作将增广矩阵(A | b)转换成阶梯形矩阵(RREF),进而求解系数矩阵A的逆矩阵乘以目标向量b,得到未知数x的值。
在MATLAB中,可以通过内置的linsolve()函数或者手写消元过程来实现。这里是一个基本的手动实现:
```matlab
function [x] = gauss_elimination(A, b)
% A: 系统的系数矩阵,b: 目标向量
[n, m] = size(A); % 获取矩阵维度
I = eye(n); % 创建单位矩阵
% 高斯消元阶段
for k = 1:n-1
for i = k+1:n
factor = A(i,k) / A(k,k); % 消元因子
A(i,:) = A(i,:) - factor * A(k,:);
b(i) = b(i) - factor * b(k);
end
end
% 回带阶段
x = zeros(n, 1);
for i = n:-1:1
x(i) = (b(i) - A(i,i+1:end)' * x(i+1:end)) / A(i,i);
end
x % 输出结果
end
```
这个函数首先初始化变量,然后进入两层循环:外层循环处理每一行,内层循环处理从当前行开始到最后一行的所有元素。通过消元(除以当前行元素,然后减去对应的倍数)把矩阵变成阶梯形形式,同时更新目标向量b。最后的回带阶段是从最后一维倒序求解x的值。
阅读全文