def __init__(self, data_path, data_name, num_class):

时间: 2024-05-20 16:13:02 浏览: 4
这是一个 Python 类的构造函数(`__init__()`方法),用于初始化类的实例对象。它有三个参数: - `data_path`:数据集文件的路径。 - `data_name`:数据集的名称。 - `num_class`:数据集的类别数。 在这个函数中,通常会将这些参数保存为类的属性,以便在类的其他方法中使用。例如,可以将`data_path`和`data_name`组合成数据集的完整路径,并将其保存为`self.data_path`属性。`num_class`则可以保存为`self.num_class`属性。
相关问题

优化下这段代码 import xdrlib, sys import xlrd import matplotlib.pyplot as plt class ReadExcel: def __init__(self, file, sheet_name, g_ranklist, ranklist, ranklist2): self.file = file self.sheet_name = sheet_name self.colnameindex =

以下是对代码进行优化的建议: 1. 删除没有使用的导入模块 `xdrlib` 和 `matplotlib.pyplot`。 2. 将类中的构造函数 `__init__` 拆分为两个独立的方法,一个用于读取 Excel 文件并获取工作表,另一个用于处理工作表数据。 3. 通过添加 `try-except` 块来捕获可能的异常情况,例如文件不存在或工作表名称错误。 4. 将变量名称更改为更具描述性的名称,以提高代码的可读性。 重构后的代码如下所示: ```python import xlrd class ReadExcel: def __init__(self, file_path, sheet_name): self.file_path = file_path self.sheet_name = sheet_name self.colnameindex = 0 def get_sheet(self): try: workbook = xlrd.open_workbook(self.file_path) sheet = workbook.sheet_by_name(self.sheet_name) return sheet except FileNotFoundError: print("File not found.") return None except xlrd.biffh.XLRDError: print("Sheet not found.") return None def process_data(self, g_rank_list, rank_list, rank_list2): sheet = self.get_sheet() if sheet: num_rows = sheet.nrows for curr_row in range(1, num_rows): row = sheet.row_values(curr_row) g_rank_list.append(int(row[0])) rank_list.append(int(row[1])) rank_list2.append(int(row[2])) ``` 在上面的代码中,我们首先删除了导入模块 `xdrlib` 和 `matplotlib.pyplot`,因为它们没有在代码中使用。然后,我们将构造函数 `__init__` 拆分为两个独立的方法 `get_sheet` 和 `process_data`。方法 `get_sheet` 用于打开 Excel 文件并获取指定的工作表,而方法 `process_data` 用于处理工作表数据,并将其存储在给定的列表中。我们还使用 `try-except` 块来捕获可能的异常情况,并更改了变量名称以提高代码的可读性。

import csv import glob import os path = "D:\cclog\cclog" class StartUpTimeAnalysis: def init(self,fn): ext = os.path.splitext(fn)[-1].lower() if ext == '.xml': # self.root = etree.parse(fn) self.prepare_xml() else: with open(fn,'r') as fin: self.text = fin.read() # for line in fin: # if '[START UP TIMING]' in line: # # self.text += '\n%s' % line # self.text += line self.prepare_log() def prepare_xml(self): data = {} _app_init_done_delay = self.app_init_done_delay.split(" ")[-4] _graph_init_done_delay = self.graph_init_done_delay.split(" ")[-4] _render_frame_done_delay = self.render_frame_done_delay.split(" ")[-5] data["_app_init_done_delay"] = _app_init_done_delay data["_graph_init_done_delay"] = _graph_init_done_delay data["_render_frame_done_delay"] = _render_frame_done_delay return data def prepare_log(self): raw = self.text self.app_init_done_delay = '\n'.join( [el for el in raw.split('\n') if 'after appInit @' in el]) self.graph_init_done_delay = '\n'.join( [el for el in raw.split('\n') if 'avm graph init done' in el]) self.render_frame_done_delay = '\n'.join([el for el in raw.split('\n') if 'cc_render_renderFrame num:0' in el]) if name == 'main': line = ['index','LOG_FILE_NAME', 'APP_INIT_DONE_DELAY', 'GRAPH_INIT_DONE_DELAY', 'RENDER_FRAME_DONE_DELAY'] resultFilePath = os.path.join(path, "result_cold_start_time.csv") fout = open(resultFilePath, 'w', newline='') book = csv.writer(fout) book.writerow(line) print(os.path.join(path + '/**/VisualApp.localhost.root.log.ERROR*')) app_init_done_delay = [] graph_init_done_delay = [] render_frame_done_delay = [] for file_name in glob.glob(os.path.join(path + '/**/VisualApp.localhost.root.log.ERROR*')): res = {} index = os.path.dirname(file_name).split("\\")[-1] res['INDEX'] = index res['LOG_FILE_NAME'] = "VisualApp.localhost.root.log.ERROR_" + index st = StartUpTimeAnalysis(file_name) data = st.prepare_xml() res.update(data) app_init_done_delay.append(float(res["_app_init_done_delay"])) graph_init_done_delay.append(float(res["_graph_init_done_delay"])) render_frame_done_delay.append(float(res["_render_frame_done_delay"])) values = res.values() book.writerow(values) DA_MAX = ['', "MAX_VALUE", max(app_init_done_delay), max(graph_init_done_delay), max(render_frame_done_delay)] DA_MIN = ['', "MIN_VALUE", min(app_init_done_delay), min(graph_init_done_delay), min(render_frame_done_delay)] DA_AVG = ['', "AVG_VALUE", sum(app_init_done_delay)/len(app_init_done_delay), sum(graph_init_done_delay)/len(graph_init_done_delay), sum(render_frame_done_delay)/len(render_frame_done_delay)] book.writerow(DA_MAX) book.writerow(DA_MIN) book.writerow(DA_AVG) fout.close() 解释一下每行代码的意思

这段代码是一个用于分析启动时间的脚本。下面是对每行代码的解释: 1. `import csv`: 导入csv模块,用于读写CSV文件。 2. `import glob`: 导入glob模块,用于匹配文件路径。 3. `import os`: 导入os模块,用于操作文件路径。 5. `path = "D:\cclog\cclog"`: 设置日志文件的路径。 7. `class StartUpTimeAnalysis:`: 定义一个名为StartUpTimeAnalysis的类,用于分析启动时间。 8. `def __init__(self, fn):`: 初始化方法,接受一个参数fn,表示日志文件的路径。 10. `ext = os.path.splitext(fn)[-1].lower()`: 获取文件扩展名,并转换为小写。 12. `if ext == '.xml':`: 如果文件扩展名为.xml,则执行以下代码块。 14. `self.prepare_xml()`: 调用prepare_xml方法,准备XML数据。 17. `else:`: 如果文件扩展名不是.xml,则执行以下代码块。 19. `with open(fn, 'r') as fin:`: 打开文件,使用文件句柄fin。 21. `self.text = fin.read()`: 读取文件内容并赋值给self.text。 24. `self.prepare_log()`: 调用prepare_log方法,准备日志数据。 27. `def prepare_xml(self):`: 定义prepare_xml方法,用于准备XML数据。 29. `data = {}`: 创建一个空字典data,用于存储数据。 31. `_app_init_done_delay = self.app_init_done_delay.split(" ")[-4]`: 提取app_init_done_delay的值,并使用空格分割后取倒数第四个元素。 32. `_graph_init_done_delay = self.graph_init_done_delay.split(" ")[-4]`: 提取graph_init_done_delay的值,并使用空格分割后取倒数第四个元素。 33. `_render_frame_done_delay = self.render_frame_done_delay.split(" ")[-5]`: 提取render_frame_done_delay的值,并使用空格分割后取倒数第五个元素。 36. `data["_app_init_done_delay"] = _app_init_done_delay`: 将_app_init_done_delay的值存储到data字典中。 37. `data["_graph_init_done_delay"] = _graph_init_done_delay`: 将_graph_init_done_delay的值存储到data字典中。 38. `data["_render_frame_done_delay"] = _render_frame_done_delay`: 将_render_frame_done_delay的值存储到data字典中。 41. `return data`: 返回data字典。 44. `def prepare_log(self):`: 定义prepare_log方法,用于准备日志数据。 46. `raw = self.text`: 将self.text赋值给raw变量。 49. `self.app_init_done_delay = '\n'.join([el for el in raw.split('\n') if 'after appInit @' in el])`: 通过列表推导式,从日志中提取包含'after appInit @'的行,并使用换行符连接成字符串,存储到self.app_init_done_delay变量中。 52. `self.graph_init_done_delay = '\n'.join([el for el in raw.split('\n') if 'avm graph init done' in el])`: 通过列表推导式,从日志中提取包含'avm graph init done'的行,并使用换行符连接成字符串,存储到self.graph_init_done_delay变量中。 55. `self.render_frame_done_delay = '\n'.join([el for el in raw.split('\n') if 'cc_render_renderFrame num:0' in el])`: 通过列表推导式,从日志中提取包含'cc_render_renderFrame num:0'的行,并使用换行符连接成字符串,存储到self.render_frame_done_delay变量中。 57. `if __name__ == '__main__':`: 如果当前脚本作为主程序运行,则执行以下代码块。 59. `line = ['index', 'LOG_FILE_NAME', 'APP_INIT_DONE_DELAY', 'GRAPH_INIT_DONE_DELAY', 'RENDER_FRAME_DONE_DELAY']`: 创建一个列表line,存储CSV文件的表头。 61. `resultFilePath = os.path.join(path, "result_cold_start_time.csv")`: 使用os.path.join方法拼接路径,生成结果文件的路径。 63. `fout = open(resultFilePath, 'w', newline='')`: 打开结果文件,并使用文件句柄fout。 64. `book = csv.writer(fout)`: 创建一个CSV写入器book。 65. `book.writerow(line)`: 将表头写入CSV文件。 68. `app_init_done_delay = []`: 创建一个空列表app_init_done_delay,用于存储app_init_done_delay的值。 69. `graph_init_done_delay = []`: 创建一个空列表graph_init_done_delay,用于存储graph_init_done_delay的值。 70. `render_frame_done_delay = []`: 创建一个空列表render_frame_done_delay,用于存储render_frame_done_delay的值。 73. `for file_name in glob.glob(os.path.join(path + '/**/VisualApp.localhost.root.log.ERROR*')):`: 遍历日志文件路径中匹配到的文件名。 75. `res = {}`: 创建一个空字典res,用于存储每个文件的结果。 77. `index = os.path.dirname(file_name).split("\\")[-1]`: 提取文件名中的索引,并赋值给index变量。 78. `res['INDEX'] = index`: 将index的值存储到res字典中。 79. `res['LOG_FILE_NAME'] = "VisualApp.localhost.root.log.ERROR_" + index`: 生成日志文件名,并将其存储到res字典中。 81. `st = StartUpTimeAnalysis(file_name)`: 创建StartUpTimeAnalysis类的实例st,传入当前文件的路径作为参数。 82. `data = st.prepare_xml()`: 调用st对象的prepare_xml方法,获取XML数据。 83. `res.update(data)`: 将data字典中的数据更新到res字典中。 86. `app_init_done_delay.append(float(res["_app_init_done_delay"]))`: 将_app_init_done_delay的值转换为浮点数,并添加到app_init_done_delay列表中。 87. `graph_init_done_delay.append(float(res["_graph_init_done_delay"]))`: 将_graph_init_done_delay的值转换为浮点数,并添加到graph_init_done_delay列表中。 88. `render_frame_done_delay.append(float(res["_render_frame_done_delay"]))`: 将_render_frame_done_delay的值转换为浮点数,并添加到render_frame_done_delay列表中。 91. `values = res.values()`: 获取res字典中的所有值,并赋值给values变量。 92. `book.writerow(values)`: 将values写入CSV文件。 96. `DA_MAX = ['', "MAX_VALUE", max(app_init_done_delay), max(graph_init_done_delay), max(render_frame_done_delay)]`: 创建一个列表DA_MAX,存储各项的最大值。 97. `DA_MIN = ['', "MIN_VALUE", min(app_init_done_delay), min(graph_init_done_delay), min(render_frame_done_delay)]`: 创建一个列表DA_MIN,存储各项的最小值。 98. `DA_AVG = ['', "AVG_VALUE", sum(app_init_done_delay)/len(app_init_done_delay), sum(graph_init_done_delay)/len(graph_init_done_delay), sum(render_frame_done_delay)/len(render_frame_done_delay)]`: 创建一个列表DA_AVG,存储各项的平均值。 101. `book.writerow(DA_MAX)`: 将DA_MAX写入CSV文件。 102. `book.writerow(DA_MIN)`: 将DA_MIN写入CSV文件。 103. `book.writerow(DA_AVG)`: 将DA_AVG写入CSV文件。 104. `fout.close()`: 关闭结果文件。

相关推荐

这段代码中加一个test loss功能 class LSTM(nn.Module): def __init__(self, input_size, hidden_size, num_layers, output_size, batch_size, device): super().__init__() self.device = device self.input_size = input_size self.hidden_size = hidden_size self.num_layers = num_layers self.output_size = output_size self.num_directions = 1 # 单向LSTM self.batch_size = batch_size self.lstm = nn.LSTM(self.input_size, self.hidden_size, self.num_layers, batch_first=True) self.linear = nn.Linear(65536, self.output_size) def forward(self, input_seq): h_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size).to(self.device) c_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size).to(self.device) output, _ = self.lstm(input_seq, (h_0, c_0)) pred = self.linear(output.contiguous().view(self.batch_size, -1)) return pred if __name__ == '__main__': # 加载已保存的模型参数 saved_model_path = '/content/drive/MyDrive/危急值/model/dangerous.pth' device = 'cuda:0' lstm_model = LSTM(input_size=1, hidden_size=64, num_layers=1, output_size=3, batch_size=256, device='cuda:0').to(device) state_dict = torch.load(saved_model_path) lstm_model.load_state_dict(state_dict) dataset = ECGDataset(X_train_df.to_numpy()) dataloader = DataLoader(dataset, batch_size=256, shuffle=True, num_workers=0, drop_last=True) loss_fn = nn.CrossEntropyLoss() optimizer = optim.SGD(lstm_model.parameters(), lr=1e-4) for epoch in range(200000): print(f'epoch:{epoch}') lstm_model.train() epoch_bar = tqdm(dataloader) for x, y in epoch_bar: optimizer.zero_grad() x_out = lstm_model(x.to(device).type(torch.cuda.FloatTensor)) loss = loss_fn(x_out, y.long().to(device)) loss.backward() epoch_bar.set_description(f'loss:{loss.item():.4f}') optimizer.step() if epoch % 100 == 0 or epoch == epoch - 1: torch.save(lstm_model.state_dict(), "/content/drive/MyDrive/危急值/model/dangerous.pth") print("权重成功保存一次")

最新推荐

recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

hive中 的Metastore

Hive中的Metastore是一个关键的组件,它用于存储和管理Hive中的元数据。这些元数据包括表名、列名、表的数据类型、分区信息、表的存储位置等信息。Hive的查询和分析都需要Metastore来管理和访问这些元数据。 Metastore可以使用不同的后端存储来存储元数据,例如MySQL、PostgreSQL、Oracle等关系型数据库,或者Hadoop分布式文件系统中的HDFS。Metastore还提供了API,使得开发人员可以通过编程方式访问元数据。 Metastore的另一个重要功能是跟踪表的版本和历史。当用户对表进行更改时,Metastore会记录这些更改,并且可以让用户回滚到
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

软件工程每个学期的生活及学习目标

软件工程每个学期的生活及学习目标可能包括以下内容: 1. 学习软件开发的基本理论和实践知识,掌握常用的编程语言和开发工具。 2. 熟悉软件开发的流程和方法,了解软件工程的标准和规范。 3. 掌握软件需求分析、设计、开发、测试、部署和维护的技能,能够独立完成简单的软件开发任务。 4. 培养团队合作的能力,学会与他人进行有效的沟通和协作,共同完成软件开发项目。 5. 提高自己的计算机技术水平,了解最新的软件开发技术和趋势,积极参与开源社区和技术交流活动。 6. 注重学习方法和习惯的培养,养成良好的学习和生活习惯,保持健康的身心状态。 7. 积极参加校内外的实践活动和比赛,拓展自己的视
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

关系数据表示学习

关系数据卢多维奇·多斯桑托斯引用此版本:卢多维奇·多斯桑托斯。关系数据的表示学习机器学习[cs.LG]。皮埃尔和玛丽·居里大学-巴黎第六大学,2017年。英语。NNT:2017PA066480。电话:01803188HAL ID:电话:01803188https://theses.hal.science/tel-01803188提交日期:2018年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaireUNIVERSITY PIERRE和 MARIE CURIE计算机科学、电信和电子学博士学院(巴黎)巴黎6号计算机科学实验室D八角形T HESIS关系数据表示学习作者:Ludovic DOS SAntos主管:Patrick GALLINARI联合主管:本杰明·P·伊沃瓦斯基为满足计算机科学博士学位的要求而提交的论文评审团成员:先生蒂埃里·A·退休记者先生尤尼斯·B·恩