self.vtk_widget.interactor.SetInteractorStyle(vtk.vtkInteractorStyleTrackballCamera())

时间: 2024-04-05 11:30:51 浏览: 22
这行代码是将交互器样式设置为 `vtk.vtkInteractorStyleTrackballCamera()`。这个交互器样式提供了类似于轨迹球的交互方式,用户可以通过鼠标拖动来旋转、缩放和平移场景。具体来说,用户可以通过鼠标左键拖动来旋转场景,通过鼠标右键拖动来平移场景,通过鼠标滚轮来缩放场景。这种交互方式非常直观和方便,适合用于三维模型的交互式浏览和编辑。
相关问题

def adjustPose(self): if(self.vtk_widget.bPoseAdjustment): self.vtk_widget.bPoseAdjustment = False self.vtk_widget.renderer.RemoveActor(self.vtk_widget.AxesActor) self.vtk_widget.interactor.SetInteractorStyle(vtk.vtkInteractorStyleTrackballCamera()) vtkpoints = self.vtk_widget.polydata_show.GetPoints() pm = vtk_to_numpy(vtkpoints.GetData()) M=self.vtk_widget.actor.GetUserMatrix() transform=self.vtkTransform2Numpy(M) pm = self.pmTransForm(pm,transform) self.AddPmAddShow(pm) mat = np.eye(4) vtkMatic = self.Numpy2vtkTransform(mat) self.vtk_widget.actor.SetUserMatrix(vtkMatic) if(self.vtk_widget.bSetScalarColorZ): self.vtk_widget.actionscalarColorZ() self.vtk_widget.actionscalarColorZ() else: if(self.vtk_widget.bShowFrame): self.ShowFrame() self.vtk_widget.bPoseAdjustment = True center=self.vtk_widget.actor.GetCenter() mat = np.eye(4) mat[0:3,3]=center vtkMatic = self.Numpy2vtkTransform(mat) self.vtk_widget.AxesActor.SetUserMatrix(vtkMatic) dim = self.vtk_widget.actor.GetBounds() self.vtk_widget.AxesActor.SetTotalLength(dim[1]-dim[0], dim[3]-dim[2], dim[5]-dim[4]) self.vtk_widget.renderer.AddActor(self.vtk_widget.AxesActor) self.vtk_widget.interactor.SetInteractorStyle(vtk.vtkInteractorStyleTrackballActor()) self.vtk_widget.render_window.Render()

这是一段使用 VTK 库进行三维模型姿态调整的 Python 代码。在函数 `adjustPose` 中,如果 `vtk_widget.bPoseAdjustment` 为真,则将其设置为假,移除 `vtk_widget.renderer` 中的 `vtk_widget.AxesActor`,并将交互器样式设置为 `vtk.vtkInteractorStyleTrackballCamera()`。然后,将 `vtk_widget.polydata_show` 中的点转换为 numpy 数组,通过 `self.pmTransForm` 函数将其与 `transform` 矩阵相乘得到新的点,再将新的点添加到 `vtk_widget.polydata_show` 中,并将 `self.vtk_widget.actor` 的用户矩阵设置为单位矩阵。如果 `vtk_widget.bSetScalarColorZ` 为真,则调用两次 `self.vtk_widget.actionscalarColorZ()` 函数。如果 `vtk_widget.bPoseAdjustment` 为假,则显示坐标轴,将 `vtk_widget.bPoseAdjustment` 设置为真,获取 `self.vtk_widget.actor` 的中心点坐标,将 `vtk_widget.AxesActor` 的用户矩阵设置为该中心点坐标,调整 `vtk_widget.AxesActor` 的尺寸,最后将 `vtk_widget.AxesActor` 添加到 `vtk_widget.renderer` 中。最后,调用 `vtk_widget.render_window.Render()` 函数显示渲染结果。

写一段代码 要求能用PyQt结合VTK读取指定的.dcm文件,将其转换成.nii.gz文件并做三维可视化

以下是一个示例代码,可以使用PyQt和VTK读取指定的.dcm文件,将其转换为.nii.gz文件,并进行三维可视化: ```python import vtk import numpy as np import SimpleITK as sitk from PyQt5.QtWidgets import QApplication, QMainWindow, QFileDialog, QWidget, QVBoxLayout from vtk.qt.QVTKRenderWindowInteractor import QVTKRenderWindowInteractor class MainWindow(QMainWindow): def __init__(self): super().__init__() self.setWindowTitle("DICOM to NIFTI Converter and Viewer") self.setGeometry(100, 100, 800, 600) self.central_widget = QWidget(self) self.setCentralWidget(self.central_widget) self.vtk_widget = QVTKRenderWindowInteractor(self.central_widget) self.layout = QVBoxLayout(self.central_widget) self.layout.addWidget(self.vtk_widget) self.reader = vtk.vtkDICOMImageReader() self.renderer = vtk.vtkRenderer() self.vtk_widget.GetRenderWindow().AddRenderer(self.renderer) self.renWin = self.vtk_widget.GetRenderWindow() self.interactor = self.renWin.GetInteractor() self.interactor.SetInteractorStyle(vtk.vtkInteractorStyleTrackballCamera()) self.interactor.SetRenderWindow(self.renWin) self.file_dialog = QFileDialog(self.central_widget) self.file_dialog.setNameFilter("DICOM files (*.dcm)") self.file_dialog.fileSelected.connect(self.load_dicom) self.menu_bar = self.menuBar() self.file_menu = self.menu_bar.addMenu("File") self.open_file_action = self.file_menu.addAction("Open DICOM file") self.open_file_action.triggered.connect(self.file_dialog.exec_) self.convert_to_nifti_action = self.file_menu.addAction("Convert to NIFTI") self.convert_to_nifti_action.triggered.connect(self.convert_to_nifti) def load_dicom(self, filename): self.reader.SetDirectoryName(filename) self.reader.Update() image_data = self.reader.GetOutput() extent = image_data.GetExtent() mapper = vtk.vtkFixedPointVolumeRayCastMapper() mapper.SetInputData(image_data) volume = vtk.vtkVolume() volume.SetMapper(mapper) self.renderer.AddVolume(volume) self.renderer.ResetCamera() self.renWin.Render() def convert_to_nifti(self): filename, _ = self.file_dialog.getSaveFileName(self.central_widget, "Save NIFTI file", "", "NIFTI files (*.nii.gz)") if filename: image_data = self.reader.GetOutput() array = vtk.util.numpy_support.vtk_to_numpy(image_data.GetPointData().GetScalars()) array = np.reshape(array, image_data.GetDimensions(), order='F') sitk_image = sitk.GetImageFromArray(array) sitk_image.SetSpacing(image_data.GetSpacing()) sitk_image.SetOrigin(image_data.GetOrigin()) sitk_image.SetDirection(image_data.GetDirection()) sitk.WriteImage(sitk_image, filename) print("Converted to NIFTI:", filename) if __name__ == "__main__": app = QApplication([]) window = MainWindow() window.show() app.exec_() ``` 运行此代码后,将打开一个具有菜单栏的窗口。单击“文件”菜单中的“打开DICOM文件”选项,选择要加载的.dcm文件。加载DICOM文件后,将在窗口中显示三维可视化。单击“文件”菜单中的“转换为NIFTI”选项,选择要将DICOM文件转换为的.nii.gz文件的路径。转换完成后,将在控制台中显示“已转换为NIFTI:”和文件路径。

相关推荐

下面代码 为什么vtk窗口为黑色,没有任何图像显示: int main() { //创建vtkConeSource实例. 该实例是可视化管道(一个源过程对象). 它产生数据(输出类型为vtkPolyData),其他过滤器可以对其进行处理 vtkConeSource* cone = vtkConeSource::New(); cone->SetHeight(3.0); cone->SetRadius(1.0); cone->SetResolution(10); //创建vtkPolyDataMapper,将多边形数据映射到图形基元中. 将圆锥体源的输出 连接到此映射器的输入 vtkPolyDataMapper* coneMapper = vtkPolyDataMapper::New(); coneMapper->SetInputConnection(cone->GetOutputPort()); //创建Actor来表示圆锥体 vtkActor* coneActor = vtkActor::New(); coneActor->SetMapper(coneMapper); //创建渲染器并为其指定Actor. 渲染器就像视口,负责绘制演员 vtkRenderer* ren1 = vtkRenderer::New(); ren1->AddActor(coneActor); ren1->SetBackground(1.0, 1.0, 1.0); ren1->SetActiveCamera(ren1->GetActiveCamera()); ren1->ResetCamera(); //创建了将显示在屏幕上的渲染窗口. 使用AddRenderer将渲染器放入渲染窗口 //vtkRenderWindow* renderWindow = vtkRenderWindow::New(); vtkWin32OpenGLRenderWindow* renderWindow = vtkWin32OpenGLRenderWindow::New(); renderWindow->SetSize(500, 500); renderWindow->AddRenderer(ren1); //tkRenderWindowInteractior类监视事件. 这些事件被翻译成VTK理解的事件调用 vtkRenderWindowInteractor* iren = vtkRenderWindowInteractor::New(); iren->SetRenderWindow(renderWindow); //vtkRenderWindowInteractior类监视事件(如鼠标). 这些事件被翻译成VTK理解的事件调用 vtkInteractorStyleTrackballCamera* style = vtkInteractorStyleTrackballCamera::New(); iren->SetInteractorStyle(style); //使用vtkBoxWidget来转换底层的coneAactor(通过操纵其变换矩阵) vtkBoxWidget* boxWidget = vtkBoxWidget::New(); boxWidget->SetInteractor(iren); boxWidget->SetPlaceFactor(1.25); //放置互动器。3D小部件的输入用于最初定位和缩放小部件 boxWidget->SetProp3D(coneActor); boxWidget->PlaceWidget(); vtkMyCallback* callback = vtkMyCallback::New(); boxWidget->AddObserver(vtkCommand::InteractionEvent, callback); //户按下“i”键可以使3D小部件栩栩如生. 可以户按下“i”键可以使3D小部件栩栩如生 boxWidget->On(); renderWindow->Render(); //启动事件循环 iren->Initialize(); iren->Start(); cone->Delete(); coneMapper->Delete(); coneActor->Delete(); callback->Delete(); boxWidget->Delete(); ren1->Delete(); renderWindow->Delete(); iren->Delete(); style->Delete(); return 0; }

最新推荐

recommend-type

grpcio-1.49.1-cp37-cp37m-macosx_10_10_x86_64.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

scratch2源码射击

scratch2源码射击提取方式是百度网盘分享地址
recommend-type

python_geohash-0.8.5-cp310-cp310-win_amd64.whl.zip

python_geohash-0.8.5-cp310-cp310-win_amd64.whl.zip
recommend-type

基于springboot的视频网站系统源码数据库.rar

计算机专业毕业设计之springboot论文资源
recommend-type

debugpy-1.4.1-cp39-cp39-manylinux2014_x86_64.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

get() { return this.photoState },

这是一个 JavaScript 中的方法定义,它定义了一个名为 `get` 的方法。这个方法没有参数,它返回了 `this.photoState`。在这个方法中,`this` 是指当前对象,而 `photoState` 是该对象的一个属性。通常情况下,`get` 方法用于获取对象的属性值,并且可以在获取属性值之前进行一些逻辑操作。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。