lasso回归python(判别标准用均方误差)
时间: 2023-07-08 15:34:21 浏览: 91
解析python实现Lasso回归
要使用Lasso回归模型进行特征选择和预测,可以使用Python中的Scikit-learn库。具体实现步骤如下:
1. 导入所需库和数据集,例如:
```python
from sklearn.linear_model import Lasso
from sklearn.metrics import mean_squared_error
from sklearn.datasets import load_boston
boston = load_boston()
X, y = boston.data, boston.target
```
2. 将数据集拆分为训练集和测试集,并进行标准化处理,例如:
```python
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
scaler = StandardScaler()
X_train_std = scaler.fit_transform(X_train)
X_test_std = scaler.transform(X_test)
```
3. 创建Lasso回归模型,并进行拟合和预测,例如:
```python
lasso = Lasso(alpha=0.1) # alpha为正则化强度
lasso.fit(X_train_std, y_train)
y_pred = lasso.predict(X_test_std)
```
4. 计算均方误差(MSE)作为模型的判别标准,例如:
```python
mse = mean_squared_error(y_test, y_pred)
print("MSE: {:.2f}".format(mse))
```
通过调整alpha的值可以优化模型的预测效果,例如使用GridSearchCV进行交叉验证和参数调优。
阅读全文