combiner = "sum"
时间: 2023-10-16 18:03:21 浏览: 72
这段代码指定了在进行Embedding层计算时,如何将同一电影的不同特征向量进行合并。在这里,`combiner`被设置为`"sum"`,表示将不同的特征向量进行求和操作,得到一个单一的特征向量,作为该电影的Embedding向量。
例如,假设一个电影有三个特征:导演、演员和类型。每个特征都被转换为一个特征向量,例如,导演可能转换为长度为256的向量,演员转换为长度为128的向量,类型转换为长度为32的向量。那么,使用`"sum"`作为`combiner`时,这三个特征向量将分别被加起来,得到一个长度为416的特征向量,作为该电影的Embedding向量。
相关问题
total_obj_num_distance_dict = {10: 0, 20: 0, 50: 0, 100: 0, 'nocare': 0} tolerance_num_point = {0.015: 0, 0.03: 0, 0.07: 0, 0.10: 0, 1000: 0} tolerance_num_vanish_point = {0.015: 0, 0.03: 0, 0.07: 0, 0.10: 0, 1000: 0} tolerance_num_via_box = {0.015: 0, 0.03: 0, 0.07: 0, 0.10: 0, 1000: 0} tolerance_num_combine = {0.015: 0, 0.03: 0, 0.07: 0, 0.10: 0, 1000: 0} distance_error_sum_point = {0.015: 0, 0.03: 0, 0.07: 0, 0.10: 0, 1000: 0} distance_error_sum_vanish_point = {0.015: 0, 0.03: 0, 0.07: 0, 0.10: 0, 1000: 0} distance_error_sum_via_box = {0.015: 0, 0.03: 0, 0.07: 0, 0.10: 0, 1000: 0} distance_error_sum_combine = {0.015: 0, 0.03: 0, 0.07: 0, 0.10: 0, 1000: 0}整理代码
可以使用字典的 `items()` 方法来遍历字典的键值对,然后按照需要的格式整理代码。以下是一个示例代码:
```python
def format_dict_code(dictionary):
code = ""
for key, value in dictionary.items():
code += f"{key}: {value}, "
code = "{" + code.rstrip(", ") + "}"
return code
total_obj_num_distance_dict_code = format_dict_code(total_obj_num_distance_dict)
tolerance_num_point_code = format_dict_code(tolerance_num_point)
tolerance_num_vanish_point_code = format_dict_code(tolerance_num_vanish_point)
tolerance_num_via_box_code = format_dict_code(tolerance_num_via_box)
tolerance_num_combine_code = format_dict_code(tolerance_num_combine)
distance_error_sum_point_code = format_dict_code(distance_error_sum_point)
distance_error_sum_vanish_point_code = format_dict_code(distance_error_sum_vanish_point)
distance_error_sum_via_box_code = format_dict_code(distance_error_sum_via_box)
distance_error_sum_combine_code = format_dict_code(distance_error_sum_combine)
print(f"total_obj_num_distance_dict = {total_obj_num_distance_dict_code}")
print(f"tolerance_num_point = {tolerance_num_point_code}")
print(f"tolerance_num_vanish_point = {tolerance_num_vanish_point_code}")
print(f"tolerance_num_via_box = {tolerance_num_via_box_code}")
print(f"tolerance_num_combine = {tolerance_num_combine_code}")
print(f"distance_error_sum_point = {distance_error_sum_point_code}")
print(f"distance_error_sum_vanish_point = {distance_error_sum_vanish_point_code}")
print(f"distance_error_sum_via_box = {distance_error_sum_via_box_code}")
print(f"distance_error_sum_combine = {distance_error_sum_combine_code}")
```
这段代码将会输出整理好的代码,你可以根据需要将其复制到你的程序中。
简化代码 total_obj_num_distance_dict = {10: 0, 20: 0, 50: 0, 100: 0, 'nocare': 0} tolerance_num_point = {0.015: 0, 0.03: 0, 0.07: 0, 0.15: 0, 1000: 0} tolerance_num_vanish_point = {0.015: 0, 0.03: 0, 0.07: 0, 0.15: 0, 1000: 0} tolerance_num_via_box = {0.015: 0, 0.03: 0, 0.07: 0, 0.15: 0, 1000: 0} tolerance_num_combine = {0.015: 0, 0.03: 0, 0.07: 0, 0.15: 0, 1000: 0} distance_error_sum_point = {0.015: 0, 0.03: 0, 0.07: 0, 0.15: 0, 1000: 0} distance_error_sum_vanish_point = {0.015: 0, 0.03: 0, 0.07: 0, 0.15: 0, 1000: 0} distance_error_sum_via_box = {0.015: 0, 0.03: 0, 0.07: 0, 0.15: 0, 1000: 0} distance_error_sum_combine = {0.015: 0, 0.03: 0, 0.07: 0, 0.15: 0, 1000: 0}
可以使用字典推导式来简化代码,将相似的字典合并为一个字典。具体代码如下所示:
```python
total_obj_num_distance_dict = {10: 0, 20: 0, 50: 0, 100: 0, 'nocare': 0}
tolerance_dict = {0.015: 0, 0.03: 0, 0.07: 0, 0.15: 0, 1000: 0}
tolerance_num_point = tolerance_dict.copy()
tolerance_num_vanish_point = tolerance_dict.copy()
tolerance_num_via_box = tolerance_dict.copy()
tolerance_num_combine = tolerance_dict.copy()
distance_error_sum_point = tolerance_dict.copy()
distance_error_sum_vanish_point = tolerance_dict.copy()
distance_error_sum_via_box = tolerance_dict.copy()
distance_error_sum_combine = tolerance_dict.copy()
```
以上代码使用 `tolerance_dict.copy()` 来复制 `tolerance_dict` 字典中的键值对,以初始化其他字典。这样可以避免重复的定义和初始化步骤,并减少了代码的冗余。
阅读全文