生成一个PID算法的代码,用在两轮平衡小车上让其保持平衡并且可以移动,并且解释为什么PID算法可以平衡小车,使用keil5软件,stm32F103C8T6芯片,标准库,请写好注释和全套代码配合小车使用,写好c和h文件

时间: 2023-06-13 10:05:32 浏览: 65
注:这是一个比较复杂的项目,需要一定的电子和机械基础,如果您不具备相关知识,建议不要尝试。 首先,需要介绍一下PID算法。 PID算法是一种常见的控制算法,其全称为比例-积分-微分控制算法。PID算法通过对系统的误差进行不断的检测和调整,使得系统能够快速、准确地达到期望的目标状态。 PID算法的核心思想是:通过比较系统当前状态与期望状态之间的误差,然后根据误差的大小和变化率来调整控制器的输出,从而使系统逐渐趋向于期望状态。 在两轮平衡小车中,我们可以将小车的倾角作为系统的状态,期望状态为平衡状态,误差为当前倾角与平衡状态之间的差值。根据PID算法,我们可以通过比例系数、积分系数和微分系数来控制控制器的输出,使得小车能够保持平衡并且可以移动。 下面是代码实现: 1. main.c文件 ```c #include "stm32f10x.h" #include "balance.h" #include "motor.h" int main(void) { SystemInit(); Balance_Init(); Motor_Init(); while (1) { Balance_Control(); } } ``` 2. balance.h文件 ```c #ifndef __BALANCE_H #define __BALANCE_H #include "stm32f10x.h" #define Kp 300.0f #define Ki 5.0f #define Kd 50.0f #define Angle_Target 0.0f void Balance_Init(void); void Balance_Control(void); #endif /* __BALANCE_H */ ``` 3. balance.c文件 ```c #include "balance.h" #include "mpu6050.h" float Angle, Gyro; // 角度、角速度 float Angle_Integral, Angle_Differential; // 角度积分、角度微分 float Motor_Left, Motor_Right; // 左右电机PWM值 void Balance_Init(void) { MPU6050_Init(); // 初始化MPU6050 Angle_Integral = 0.0f; // 初始角度积分值为0 Angle_Differential = 0.0f; // 初始角度微分值为0 Motor_Left = 0.0f; // 初始左电机PWM值为0 Motor_Right = 0.0f; // 初始右电机PWM值为0 } void Balance_Control(void) { float Angle_Error; // 角度误差 float Gyro_Error; // 角速度误差 Angle = MPU6050_GetAngle(); // 获取角度值 Gyro = MPU6050_GetGyro(); // 获取角速度值 Angle_Error = Angle_Target - Angle; // 计算角度误差 Angle_Integral += Angle_Error; // 计算角度积分 Angle_Differential = Gyro; // 计算角度微分 Motor_Left = Kp * Angle_Error + Ki * Angle_Integral + Kd * Angle_Differential; // 计算左电机PWM值 Motor_Right = Kp * Angle_Error + Ki * Angle_Integral + Kd * Angle_Differential; // 计算右电机PWM值 Motor_SetSpeed(Motor_Left, Motor_Right); // 设置电机PWM值 } ``` 4. motor.h文件 ```c #ifndef __MOTOR_H #define __MOTOR_H #include "stm32f10x.h" #define Motor_Left_GPIO GPIOA #define Motor_Left_GPIO_Pin GPIO_Pin_0 #define Motor_Right_GPIO GPIOA #define Motor_Right_GPIO_Pin GPIO_Pin_1 #define PWM_Frequency 1000 void Motor_Init(void); void Motor_SetSpeed(float Left, float Right); #endif /* __MOTOR_H */ ``` 5. motor.c文件 ```c #include "motor.h" void Motor_Init(void) { GPIO_InitTypeDef GPIO_InitStructure; TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; TIM_OCInitTypeDef TIM_OCInitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE); // 使能GPIOA时钟 RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE); // 使能TIM2时钟 GPIO_InitStructure.GPIO_Pin = Motor_Left_GPIO_Pin | Motor_Right_GPIO_Pin; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(Motor_Left_GPIO, &GPIO_InitStructure); TIM_TimeBaseStructure.TIM_Period = 2000 - 1; // PWM周期:20ms TIM_TimeBaseStructure.TIM_Prescaler = 72 - 1; // 分频系数:72 TIM_TimeBaseStructure.TIM_ClockDivision = 0; TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure); TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; TIM_OCInitStructure.TIM_Pulse = 0; TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; TIM_OC1Init(TIM2, &TIM_OCInitStructure); TIM_OC1PreloadConfig(TIM2, TIM_OCPreload_Enable); TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; TIM_OCInitStructure.TIM_Pulse = 0; TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; TIM_OC2Init(TIM2, &TIM_OCInitStructure); TIM_OC2PreloadConfig(TIM2, TIM_OCPreload_Enable); TIM_Cmd(TIM2, ENABLE); } void Motor_SetSpeed(float Left, float Right) { uint16_t Left_Pulse, Right_Pulse; Left_Pulse = (uint16_t)(2000.0f * Left / PWM_Frequency); Right_Pulse = (uint16_t)(2000.0f * Right / PWM_Frequency); TIM_SetCompare1(TIM2, Left_Pulse); TIM_SetCompare2(TIM2, Right_Pulse); } ``` 以上就是PID算法在两轮平衡小车上的应用。简单来说,通过测量小车的倾角和角速度,然后通过PID算法计算出左右电机的PWM值,从而实现小车的平衡控制。

相关推荐

最新推荐

recommend-type

增量式PID控制算法.doc

在实际应用中,增量式PID控制算法可以用于控制小车的速度,例如在智能小车的比赛中,使用增量式PID控制算法可以快速地调整小车的速度,实现小车的稳定运行。 此外,增量式PID控制算法也可以用于控制其他的执行机构...
recommend-type

两轮自平衡小车AVR程序

本文将深入探讨一个基于AVR单片机的两轮自平衡小车控制程序,该程序涉及了PID调节和滤波算法,并带有详细的注释,适合于有经验的开发者进行移植和调试。 首先,自平衡小车的核心在于保持车辆在直立状态,这需要精确...
recommend-type

基于CCD摄像头智能车分段PID控制算法设计

自动寻迹智能车涉及到当前高技术领域内的许多先进技术,...本课题是以飞思卡尔智能车竞赛为背景,以单片机作为核心控制单元,以摄像头作为路径识别传感器,以直流电机作为小车的驱动装置,以舵机控制小车转向来设计的。
recommend-type

小车巡线控制算法 最经典的PID控制算法

小车巡线控制算法 PV=ReadMotorSpeed() Error=SP-PV CV=Error*Kprop Setpwm(cv) Goto loop
recommend-type

校园网Web平台二手商品交易系统的设计与实现研究论文

python有趣的库本系统是一款基于JSP/J2EE技术的校园网二手交易平台,采用Java语言开发。它采用流行的B/S架构,以互联网为基础运行,服务端安装简便,客户端则只需联网即可通过浏览器轻松访问。无需复杂的C/S模式安装、配置和维护流程。系统利用Java的面向对象、跨平台、高安全、高稳定、多线程等特性,结合其对网络编程技术的支持,使得本平台具有极高的实用价值。 系统结构清晰,分为三大核心部分:JavaBeans负责业务逻辑处理,JSP结合HTML和JavaScript负责界面展示,Servlet则作为中间件,并通过JDBC-ODBC桥接器与SQL Server 2000数据库进行交互,确保数据访问的高效和稳定。。内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
recommend-type

京瓷TASKalfa系列维修手册:安全与操作指南

"该资源是一份针对京瓷TASKalfa系列多款型号打印机的维修手册,包括TASKalfa 2020/2021/2057,TASKalfa 2220/2221,TASKalfa 2320/2321/2358,以及DP-480,DU-480,PF-480等设备。手册标注为机密,仅供授权的京瓷工程师使用,强调不得泄露内容。手册内包含了重要的安全注意事项,提醒维修人员在处理电池时要防止爆炸风险,并且应按照当地法规处理废旧电池。此外,手册还详细区分了不同型号产品的打印速度,如TASKalfa 2020/2021/2057的打印速度为20张/分钟,其他型号则分别对应不同的打印速度。手册还包括修订记录,以确保信息的最新和准确性。" 本文档详尽阐述了京瓷TASKalfa系列多功能一体机的维修指南,适用于多种型号,包括速度各异的打印设备。手册中的安全警告部分尤为重要,旨在保护维修人员、用户以及设备的安全。维修人员在操作前必须熟知这些警告,以避免潜在的危险,如不当更换电池可能导致的爆炸风险。同时,手册还强调了废旧电池的合法和安全处理方法,提醒维修人员遵守地方固体废弃物法规。 手册的结构清晰,有专门的修订记录,这表明手册会随着设备的更新和技术的改进不断得到完善。维修人员可以依靠这份手册获取最新的维修信息和操作指南,确保设备的正常运行和维护。 此外,手册中对不同型号的打印速度进行了明确的区分,这对于诊断问题和优化设备性能至关重要。例如,TASKalfa 2020/2021/2057系列的打印速度为20张/分钟,而TASKalfa 2220/2221和2320/2321/2358系列则分别具有稍快的打印速率。这些信息对于识别设备性能差异和优化工作流程非常有用。 总体而言,这份维修手册是京瓷TASKalfa系列设备维修保养的重要参考资料,不仅提供了详细的操作指导,还强调了安全性和合规性,对于授权的维修工程师来说是不可或缺的工具。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】入侵检测系统简介

![【进阶】入侵检测系统简介](http://www.csreviews.cn/wp-content/uploads/2020/04/ce5d97858653b8f239734eb28ae43f8.png) # 1. 入侵检测系统概述** 入侵检测系统(IDS)是一种网络安全工具,用于检测和预防未经授权的访问、滥用、异常或违反安全策略的行为。IDS通过监控网络流量、系统日志和系统活动来识别潜在的威胁,并向管理员发出警报。 IDS可以分为两大类:基于网络的IDS(NIDS)和基于主机的IDS(HIDS)。NIDS监控网络流量,而HIDS监控单个主机的活动。IDS通常使用签名检测、异常检测和行
recommend-type

轨道障碍物智能识别系统开发

轨道障碍物智能识别系统是一种结合了计算机视觉、人工智能和机器学习技术的系统,主要用于监控和管理铁路、航空或航天器的运行安全。它的主要任务是实时检测和分析轨道上的潜在障碍物,如行人、车辆、物体碎片等,以防止这些障碍物对飞行或行驶路径造成威胁。 开发这样的系统主要包括以下几个步骤: 1. **数据收集**:使用高分辨率摄像头、雷达或激光雷达等设备获取轨道周围的实时视频或数据。 2. **图像处理**:对收集到的图像进行预处理,包括去噪、增强和分割,以便更好地提取有用信息。 3. **特征提取**:利用深度学习模型(如卷积神经网络)提取障碍物的特征,如形状、颜色和运动模式。 4. **目标
recommend-type

小波变换在视频压缩中的应用

"多媒体通信技术视频信息压缩与处理(共17张PPT).pptx" 多媒体通信技术涉及的关键领域之一是视频信息压缩与处理,这在现代数字化社会中至关重要,尤其是在传输和存储大量视频数据时。本资料通过17张PPT详细介绍了这一主题,特别是聚焦于小波变换编码和分形编码两种新型的图像压缩技术。 4.5.1 小波变换编码是针对宽带图像数据压缩的一种高效方法。与离散余弦变换(DCT)相比,小波变换能够更好地适应具有复杂结构和高频细节的图像。DCT对于窄带图像信号效果良好,其变换系数主要集中在低频部分,但对于宽带图像,DCT的系数矩阵中的非零系数分布较广,压缩效率相对较低。小波变换则允许在频率上自由伸缩,能够更精确地捕捉图像的局部特征,因此在压缩宽带图像时表现出更高的效率。 小波变换与傅里叶变换有本质的区别。傅里叶变换依赖于一组固定频率的正弦波来表示信号,而小波分析则是通过母小波的不同移位和缩放来表示信号,这种方法对非平稳和局部特征的信号描述更为精确。小波变换的优势在于同时提供了时间和频率域的局部信息,而傅里叶变换只提供频率域信息,却丢失了时间信息的局部化。 在实际应用中,小波变换常常采用八带分解等子带编码方法,将低频部分细化,高频部分则根据需要进行不同程度的分解,以此达到理想的压缩效果。通过改变小波的平移和缩放,可以获取不同分辨率的图像,从而实现按需的图像质量与压缩率的平衡。 4.5.2 分形编码是另一种有效的图像压缩技术,特别适用于处理不规则和自相似的图像特征。分形理论源自自然界的复杂形态,如山脉、云彩和生物组织,它们在不同尺度上表现出相似的结构。通过分形编码,可以将这些复杂的形状和纹理用较少的数据来表示,从而实现高压缩比。分形编码利用了图像中的分形特性,将其转化为分形块,然后进行编码,这在处理具有丰富细节和不规则边缘的图像时尤其有效。 小波变换和分形编码都是多媒体通信技术中视频信息压缩的重要手段,它们分别以不同的方式处理图像数据,旨在减少存储和传输的需求,同时保持图像的质量。这两种技术在现代图像处理、视频编码标准(如JPEG2000)中都有广泛应用。