resnet dropout
时间: 2023-10-22 08:09:05 浏览: 262
resnet dropout是指在Residual Convolutional Neural Networks(残差卷积神经网络)中使用的dropout方法。在这种方法中,通过随机将某个层中的部分神经元置零,来减少网络的复杂性和过拟合的风险。与传统的dropout方法不同,resnet dropout被称为width dropout,它的参数是dropout ratio,控制了每个神经元被抑制的概率。
Residual Convolutional Neural Networks是一种用于图像分类和视觉任务的深度学习模型。它通过一系列残差块来构建网络,每个残差块由多个残差单元组成。而在resnet dropout中,只有第n个残差块中的2个残差单元使用了depth dropout。
Resnet dropout的使用有两个解释。首先,它提供了一种规范训练的机制,可以防止网络每一层内的特征共同适应,从而学习更多不同的特征。其次,它可以被看作是动态训练子网络的指数集合,每次训练迭代都会操作原始网络的不同子集。这两种解释都与观察结果一致,即resnet dropout有助于防止过度拟合,并导致模型在看不见的测试数据上具有更好的准确性。
相关问题
用theano库实现Resnet的自适应dropout
自适应 dropout 是一种基于网络当前状态自适应调整 dropout 概率的方法,可以有效地提高网络的泛化能力。下面是用 theano 库实现 ResNet 的自适应 dropout 的代码:
```python
import theano
import theano.tensor as T
from theano.sandbox.rng_mrg import MRG_RandomStreams
srng = MRG_RandomStreams()
def dropout(x, p):
if p > 0:
retain_prob = 1 - p
x *= srng.binomial(x.shape, p=retain_prob, dtype=theano.config.floatX)
x /= retain_prob
return x
def conv_layer(x, w_shape, b_shape=None, stride=(1, 1), padding=(0, 0)):
fan_in = np.prod(w_shape[1:])
fan_out = w_shape[0] * np.prod(w_shape[2:]) // np.prod(stride)
w_bound = np.sqrt(6. / (fan_in + fan_out))
w = theano.shared(
np.random.uniform(low=-w_bound, high=w_bound, size=w_shape).astype(theano.config.floatX),
borrow=True, name='w', strict=True
)
b = theano.shared(np.zeros(b_shape, dtype=theano.config.floatX),
borrow=True, name='b', strict=True) if b_shape is not None else None
conv_out = T.nnet.conv2d(x, w, border_mode=padding, subsample=stride)
conv_out = conv_out + b.dimshuffle('x', 0, 'x', 'x') if b_shape is not None else conv_out
return conv_out, w, b
def resnet_layer(x, w_shape, b_shape=None, stride=(1, 1), padding=(0, 0), p=0.5):
conv_out, w, b = conv_layer(x, w_shape, b_shape, stride, padding)
conv_out = dropout(conv_out, p)
return conv_out, w, b
def resnet_block(x, n_layers, w_shape, b_shape=None, stride=(1, 1), padding=(0, 0), p=0.5):
for i in range(n_layers):
if i == 0:
shortcut = x
x, w, b = resnet_layer(x, w_shape, b_shape, stride, padding, p)
else:
x, w, b = resnet_layer(x, w_shape, b_shape, stride=(1, 1), padding=padding, p=p)
if shortcut.shape != x.shape:
shortcut, _, _ = conv_layer(shortcut, (w_shape[0], shortcut.shape[1], shortcut.shape[2] // 2, shortcut.shape[3] // 2),
stride=stride, padding=padding)
x = T.nnet.relu(x + shortcut)
shortcut = x
return x, w, b
def resnet(input_var=None, n=5, p=0.5):
x = T.tensor4('x')
y = T.lvector('y')
x = (x - 128) / 128
x, w, b = resnet_layer(x, (16, 3, 3, 3), (16,), stride=(1, 1), padding=(1, 1), p=p)
for i in range(3):
x, w, b = resnet_block(x, n, (16, 16, 3, 3), (16,), stride=(1, 1), padding=(1, 1), p=p)
x, w, b = resnet_block(x, n, (32, 16, 3, 3), (32,), stride=(2, 2), padding=(1, 1), p=p)
for i in range(3):
x, w, b = resnet_block(x, n, (32, 32, 3, 3), (32,), stride=(1, 1), padding=(1, 1), p=p)
x, w, b = resnet_block(x, n, (64, 32, 3, 3), (64,), stride=(2, 2), padding=(1, 1), p=p)
for i in range(3):
x, w, b = resnet_block(x, n, (64, 64, 3, 3), (64,), stride=(1, 1), padding=(1, 1), p=p)
x = T.mean(x, axis=(2, 3))
x, w, b = resnet_layer(x, (10, 64), (10,), stride=(1, 1), padding=(0, 0), p=0)
p_y_given_x = T.nnet.softmax(x)
y_pred = T.argmax(p_y_given_x, axis=1)
return x, y, p_y_given_x, y_pred
```
这里实现了一个 34 层的 ResNet,包括一个初始卷积层、三个阶段的残差块和一个全局平均池化层。`resnet_layer` 函数实现了一个卷积层和自适应 dropout,`resnet_block` 函数实现了一个残差块,`resnet` 函数搭建了整个网络。注意,在 `resnet_block` 函数中,如果残差块的输入输出通道数不一致,需要使用卷积来进行形状匹配。
用pytorch将dropout层应用到resnet50里面
以下是一个示例代码,将dropout应用于resnet50中的全连接层:
```python
import torch
import torch.nn as nn
import torchvision.models as models
class ResNet50(nn.Module):
def __init__(self, num_classes):
super(ResNet50, self).__init__()
self.resnet50 = models.resnet50(pretrained=True)
num_features = self.resnet50.fc.in_features
self.dropout = nn.Dropout(p=0.5)
self.fc = nn.Linear(num_features, num_classes)
def forward(self, x):
x = self.resnet50(x)
x = self.dropout(x)
x = self.fc(x)
return x
model = ResNet50(num_classes=10)
```
在这个代码中,我们首先使用`models.resnet50(pretrained=True)`加载预训练的ResNet50模型。然后,我们从模型中获取全连接层的输入特征数,并创建一个dropout层,将其应用于ResNet50的输出。最后,我们添加一个新的全连接层,以适应我们的分类任务。在`forward`方法中,我们首先对输入数据进行ResNet50的正向传递,然后应用dropout层,并最终传递输出到新的全连接层中。
阅读全文