void DFS_AL(ALGraph &G, int v) {//深度优先搜索 cout << G.vertices[v].City.cCity; if (!G.bFinal[v]) cout << "-->"; G.bFinal[v] = true; ArcNode* p; p = G.vertices[v].Firstarc; while (p != NULL) { //遍历节点的所有相邻点 int w = p->nAdjvex; if (!G.bFinal[w]) DFS_AL(G, w);//递归遍历 p = p->nextArc; } }该函数有何问题

时间: 2024-01-24 13:19:29 浏览: 24
该函数的问题在于它没有对图进行初始化。在该函数中使用了 `G.bFinal[v]` 来记录节点是否已被访问过,但是在函数开始时并没有对 `G.bFinal` 数组进行初始化,这可能导致程序的不稳定性和不可预测的结果。正确的做法是在函数开始时显式地将 `G.bFinal` 数组初始化为 `false`,比如可以使用 `memset(G.bFinal, false, sizeof(G.bFinal))`。
相关问题

1.采用邻接表表示法创建无向图 void CreateUDG(AL Graph &G) 2.深度优先搜索遍历 void DFS(ALGraph G. int v) 3.编写一个主函数,调用上述算法,实现采用邻接表表示图的深度优先搜索遍历。

好的,我来回答您的问题。 1. 首先介绍一下邻接表表示法。邻接表是一种图的表示方法,它把每个节点与它所连的所有边放在一个链表中。在无向图中,每条边都可以看做是两个节点之间的关系,因此我们可以为每个节点建立一个链表,记录它所连接的其他节点。具体步骤如下: - 定义邻接表的数据结构,包括节点信息和边信息。 - 读入节点数和边数,创建一个空的邻接表。 - 读入每条边的起点和终点,将它们加入对应的节点的链表中。 下面是采用邻接表表示法创建无向图的代码: ``` struct ArcNode { int adjvex; struct ArcNode *next; }; struct VNode { int data; struct ArcNode *first; }; typedef struct { VNode adjlist[MAXSIZE]; int n, e; } ALGraph; void CreateUDG(ALGraph &G) { int i, j, k; ArcNode *p; cin >> G.n >> G.e; for (i = 1; i <= G.n; i++) { G.adjlist[i].data = i; G.adjlist[i].first = NULL; } for (k = 1; k <= G.e; k++) { cin >> i >> j; p = new ArcNode; p->adjvex = j; p->next = G.adjlist[i].first; G.adjlist[i].first = p; p = new ArcNode; p->adjvex = i; p->next = G.adjlist[j].first; G.adjlist[j].first = p; } } ``` 2. 深度优先搜索遍历是一种重要的图遍历算法,它可以用来搜索图中的连通分量或者找到两个节点之间的路径。具体步骤如下: - 选择一个起始节点,标记它为已访问。 - 从它的邻居中选择一个未被访问的节点,标记它为已访问,然后继续递归搜索这个节点的邻居。 - 如果当前节点没有未被访问的邻居,回溯到上一个节点,继续搜索它的其他邻居。 下面是深度优先搜索遍历的代码: ``` void DFS(ALGraph G, int v) { ArcNode *p; visited[v] = true; cout << G.adjlist[v].data << " "; for (p = G.adjlist[v].first; p; p = p->next) { if (!visited[p->adjvex]) { DFS(G, p->adjvex); } } } ``` 3. 最后是主函数的代码,它首先调用CreateUDG函数创建一个无向图,然后从第一个节点开始调用DFS函数进行深度优先搜索遍历: ``` int main() { ALGraph G; CreateUDG(G); memset(visited, false, sizeof(visited)); DFS(G, 1); return 0; } ``` 这样就完成了采用邻接表表示图的深度优先搜索遍历。

解析void CreateGraph(ALGraph *G)void DFS(ALGraph G, int v) void DFSTraverse(ALGraph G) 的作用

这三个函数都是关于图的操作。 void CreateGraph(ALGraph *G)函数用于创建一个无向图或有向图,其中ALGraph是定义图的结构体,包含了图中顶点的个数、边的个数、以及每个顶点的入度和出度等信息。在函数中,我们通常需要通过输入来构建图的邻接表表示。 void DFS(ALGraph G, int v)函数实现了深度优先搜索(DFS)算法,用于从图的某个顶点开始遍历整个图。具体来说,从顶点v开始遍历,访问v的第一个未被访问的邻接点,然后递归地访问该邻接点的邻接点,直至所有可到达的节点都被访问过。 void DFSTraverse(ALGraph G)函数则是对整个图进行深度优先遍历。该函数会遍历图中所有顶点,对于每个未被访问的顶点,都会调用DFS函数进行遍历。 综上所述,这三个函数的作用是构建图的邻接表表示,并实现图的深度优先遍历算法,从而遍历整个图。

相关推荐

试写一算法,判断以邻接表方式存储的有向图中是否存在由顶点Vi到顶点Vj的路径(i-->j)。 【输入形式】 顶点个数:n 边的条数:m 边的有向顶点对: (a,b)…… 待判断定点i,j 【输出形式】 True 或 False 【样例输入】 5 4 1 2 1 3 2 4 3 5 1 5 【样例输出】 True 【样例说明】 【评分标准】 【代码框架】 #include<stdio.h> #include<malloc.h> #define OK 1 #define ERROR 0 #define MAX_VEX_NUM 100 //最大顶点数量 typedef int Status; typedef enum{AG,AN,DG,DN} GKind; //图类型定义 typedef struct ArcNode{ int adjvex; //邻接点数组下标(从0开始) struct ArcNode *nextarc; int weight; }; typedef struct { int vertex; //顶点编号,从1开始 ArcNode *firstarc; }VNode,AdjList[MAX_VEX_NUM]; typedef struct{ AdjList vertices; int vexnum; int arcnum; GKind kind; }ALGraph; Status InitALGraph(ALGraph &G) { } //创建图的邻接表存储结构 //n: 顶点数 //vertices[]:顶点数组 //edges[][]:边数组 //edgesSize:边数目 Status CreateALGraph(ALGraph &G, int n, int vertices[ ], int edges[20][2], int edgesSize) { } //连通图的深度优先搜索 //v0: 起点的数组下标(从0开始) //visited[ ]:访问标志数组 void DFS(ALGraph G, int v0, int visited[]) { } //图的深度优先搜索 int DFSTraverse(ALGraph G) { } // 判断图的两个顶点是否连通,如果连通,返回true, 否则返回false //v: 起点的编号(从1开始) //w:终点的编号(从1开始) bool isConnect(ALGraph G, int v, int w) { }

#include <stdio.h> #include <stdlib.h> #define MAX_VERTEX_NUM 100 // 最大顶点数 #define FALSE 0 #define TRUE 1 // 邻接表结构体 typedef struct ArcNode{ int adjvex; struct ArcNode *nextarc; }ArcNode; typedef struct VNode{ int data; ArcNode *firstarc; }VNode, AdjList[MAX_VERTEX_NUM]; typedef struct{ AdjList vertices; int vexnum, arcnum; // 顶点数和边数 }ALGraph; // 初始化邻接表 void InitALGraph(ALGraph *G) { int i; G->vexnum = G->arcnum = 0; for(i = 0; i < MAX_VERTEX_NUM; i++){ G->vertices[i].firstarc = NULL; } } // 添加顶点 void AddVertex(ALGraph *G, int v) { if(G->vexnum == MAX_VERTEX_NUM){ printf("Error: Vertex number exceeds maximum.\n"); return; } G->vertices[G->vexnum].data = v; G->vexnum++; } // 添加边 void AddArc(ALGraph *G, int v1, int v2) { if(G->arcnum >= MAX_VERTEX_NUM * (MAX_VERTEX_NUM - 1) / 2){ printf("Error: Arc number exceeds maximum.\n"); return; } ArcNode *p = (ArcNode *)malloc(sizeof(ArcNode)); p->adjvex = v2; p->nextarc = G->vertices[v1].firstarc; G->vertices[v1].firstarc = p; G->arcnum++; } // DFS遍历 void DFS(ALGraph *G, int v, int *visited) { printf("%d ", G->vertices[v].data); visited[v] = TRUE; ArcNode *p = G->vertices[v].firstarc; while(p != NULL){ int w = p->adjvex; if(!visited[w]){ DFS(G, w, visited); } p = p->nextarc; } } // BFS遍历 void BFS(ALGraph *G, int v, int *visited) { int queue[MAX_VERTEX_NUM]; int front = -1, rear = -1; printf("%d ", G->vertices[v].data); visited[v] = TRUE; queue[++rear] = v; while(front != rear){ int w = queue[++front]; ArcNode *p = G->vertices[w].firstarc; while(p != NULL){ int u = p->adjvex; if(!visited[u]){ printf("%d ", G->vertices[u].data); visited[u] = TRUE; queue[++rear] = u; } p = p->nextarc; } } } int main() { ALGraph G; InitALGraph(&G); // 添加顶点 AddVertex(&G, 1); AddVertex(&G, 2); AddVertex(&G, 3); AddVertex(&G, 4); AddVertex(&G, 5); // 添加边 AddArc(&G, 0, 1); AddArc(&G, 0, 2); AddArc(&G, 1, 3); AddArc(&G, 1, 4); AddArc(&G, 2, 4); // 输出深度优先序列 int visited[MAX_VERTEX_NUM] = {FALSE}; printf("DFS: "); DFS(&G, 0, visited); printf("\n"); // 输出广度优先序列 int visited2[MAX_VERTEX_NUM] = {FALSE}; printf("BFS: "); BFS(&G, 0, visited2); printf("\n"); return 0; } 修改代码,使其能输出图的可视化输出图

一个连通图采用邻接表作为存储结构。设计一个算法,实现从顶点v出发的深度优先遍历的非递归过程。#include<iostream> #define OK 1 #define ERROR 0 #define OVERFLOW -2 #define MAXSIZE 100 using namespace std; typedef struct ArcNode {//边结点 int data; struct ArcNode *nextarc; //链域:指向下一条边的指针 }ArcNode; typedef struct VNode {//顶点信息 int data; ArcNode *firstarc; //链域:指向第一条依附该顶点的边的指针 }VNode,AdjList[MAXSIZE]; //AdjList表示邻接表类型 typedef struct {//邻接表 AdjList vertices; int vexnum,arcnum; //图的当前顶点数和边数 }ALGraph; typedef struct {//顺序栈 int *base; //栈底指针 int *top; //栈顶指针 int stacksize; //栈可用的最大容量 }SqStack; void InitStack(SqStack &S) {//顺序栈的初始化 S.base=new int[MAXSIZE]; //动态分配一个最大容量MAXSIZE的数组空间 S.top=S.base; //top初始为base,空栈 S.stacksize=MAXSIZE; } void Push(SqStack &S,int e) {//入栈操作 if(S.top-S.base==S.stacksize) //栈满 return; *S.top=e; //元素e压入栈顶 S.top++; //栈顶指针加1 } void Pop(SqStack &S,int &e) {//出栈操作 if(S.base==S.top) //栈空 return; S.top--; //栈顶指针减1 e=*S.top; //将栈顶元素赋给e } bool StackEmpty(SqStack S) {//判空操作 if(S.base==S.top) //栈空返回true return true; return false; } bool visited[MAXSIZE]; //访问标志数组,初始为false int CreateUDG(ALGraph &G,int vexnum,int arcnum) {//采用邻接表表示法,创建无向图G G.vexnum=vexnum; //输入总顶点数 G.arcnum=arcnum; //输入总边数 if(G.vexnum>MAXSIZE) return ERROR; //超出最大顶点数则结束函数 int i,h,k; for(i=1;i<=G.vexnum;i++) //构造表头结点表 { G.vertices[i].data=i; visited[i]=false; G.vertices[i].firstarc=NULL; } ArcNode *p1,*p2; for(i=0;i<G.arcnum;i++) //输入各边,头插法构造邻接表 { cin>>h>>k; p1=new ArcNode; p1->data=k; p1->nextarc=G.vertices[h].firstarc; G.vertices[h].firstarc=p1; p2=new ArcNode; p2->data=h; p2->nextarc=G.vertices[k].firstarc; G.vertices[k].firstarc=p2; } return OK; } void DFS(ALGraph G,int v,SqStack S) {//从第v个顶点出发非递归实现深度优先遍历图G /**begin/ /**end/ } int main() { int n,m; while(cin>>n>>m) { if(n==0&&m==0) break; ALGraph G; SqStack S; CreateUDG(G,n,m); //创建无向图G int d; //从d开始遍历 cin>>d; DFS(G,d,S); //基于邻接表的深度优先遍历 } return 0; }

最新推荐

recommend-type

电力电子系统建模与控制入门

"该资源是关于电力电子系统建模及控制的课程介绍,包含了课程的基本信息、教材与参考书目,以及课程的主要内容和学习要求。" 电力电子系统建模及控制是电力工程领域的一个重要分支,涉及到多学科的交叉应用,如功率变换技术、电工电子技术和自动控制理论。这门课程主要讲解电力电子系统的动态模型建立方法和控制系统设计,旨在培养学生的建模和控制能力。 课程安排在每周二的第1、2节课,上课地点位于东12教401室。教材采用了徐德鸿编著的《电力电子系统建模及控制》,同时推荐了几本参考书,包括朱桂萍的《电力电子电路的计算机仿真》、Jai P. Agrawal的《Powerelectronicsystems theory and design》以及Robert W. Erickson的《Fundamentals of Power Electronics》。 课程内容涵盖了从绪论到具体电力电子变换器的建模与控制,如DC/DC变换器的动态建模、电流断续模式下的建模、电流峰值控制,以及反馈控制设计。还包括三相功率变换器的动态模型、空间矢量调制技术、逆变器的建模与控制,以及DC/DC和逆变器并联系统的动态模型和均流控制。学习这门课程的学生被要求事先预习,并尝试对书本内容进行仿真模拟,以加深理解。 电力电子技术在20世纪的众多科技成果中扮演了关键角色,广泛应用于各个领域,如电气化、汽车、通信、国防等。课程通过列举各种电力电子装置的应用实例,如直流开关电源、逆变电源、静止无功补偿装置等,强调了其在有功电源、无功电源和传动装置中的重要地位,进一步凸显了电力电子系统建模与控制技术的实用性。 学习这门课程,学生将深入理解电力电子系统的内部工作机制,掌握动态模型建立的方法,以及如何设计有效的控制系统,为实际工程应用打下坚实基础。通过仿真练习,学生可以增强解决实际问题的能力,从而在未来的工程实践中更好地应用电力电子技术。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

图像写入的陷阱:imwrite函数的潜在风险和规避策略,规避图像写入风险,保障数据安全

![图像写入的陷阱:imwrite函数的潜在风险和规避策略,规避图像写入风险,保障数据安全](https://static-aliyun-doc.oss-accelerate.aliyuncs.com/assets/img/zh-CN/2275688951/p86862.png) # 1. 图像写入的基本原理与陷阱 图像写入是计算机视觉和图像处理中一项基本操作,它将图像数据从内存保存到文件中。图像写入过程涉及将图像数据转换为特定文件格式,并将其写入磁盘。 在图像写入过程中,存在一些潜在陷阱,可能会导致写入失败或图像质量下降。这些陷阱包括: - **数据类型不匹配:**图像数据可能与目标文
recommend-type

protobuf-5.27.2 交叉编译

protobuf(Protocol Buffers)是一个由Google开发的轻量级、高效的序列化数据格式,用于在各种语言之间传输结构化的数据。版本5.27.2是一个较新的稳定版本,支持跨平台编译,使得可以在不同的架构和操作系统上构建和使用protobuf库。 交叉编译是指在一个平台上(通常为开发机)编译生成目标平台的可执行文件或库。对于protobuf的交叉编译,通常需要按照以下步骤操作: 1. 安装必要的工具:在源码目录下,你需要安装适合你的目标平台的C++编译器和相关工具链。 2. 配置Makefile或CMakeLists.txt:在protobuf的源码目录中,通常有一个CMa
recommend-type

SQL数据库基础入门:发展历程与关键概念

本文档深入介绍了SQL数据库的基础知识,首先从数据库的定义出发,强调其作为数据管理工具的重要性,减轻了开发人员的数据处理负担。数据库的核心概念是"万物皆关系",即使在面向对象编程中也有明显区分。文档讲述了数据库的发展历程,从早期的层次化和网状数据库到关系型数据库的兴起,如Oracle的里程碑式论文和拉里·埃里森推动的关系数据库商业化。Oracle的成功带动了全球范围内的数据库竞争,最终催生了SQL这一通用的数据库操作语言,统一了标准,使得关系型数据库成为主流。 接着,文档详细解释了数据库系统的构成,包括数据库本身(存储相关数据的集合)、数据库管理系统(DBMS,负责数据管理和操作的软件),以及数据库管理员(DBA,负责维护和管理整个系统)和用户应用程序(如Microsoft的SSMS)。这些组成部分协同工作,确保数据的有效管理和高效处理。 数据库系统的基本要求包括数据的独立性,即数据和程序的解耦,有助于快速开发和降低成本;减少冗余数据,提高数据共享性,以提高效率;以及系统的稳定性和安全性。学习SQL时,要注意不同数据库软件可能存在的差异,但核心语言SQL的学习是通用的,后续再根据具体产品学习特异性。 本文档提供了一个全面的框架,涵盖了SQL数据库从基础概念、发展历程、系统架构到基本要求的方方面面,对于初学者和数据库管理员来说是一份宝贵的参考资料。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

图像写入的最佳实践:imwrite函数与其他图像写入工具的比较,打造高效图像写入流程

![图像写入的最佳实践:imwrite函数与其他图像写入工具的比较,打造高效图像写入流程](https://static.mianbaoban-assets.eet-china.com/xinyu-images/MBXY-CR-ce618398b464903a8c60e0b57b51ab77.png) # 1. 图像写入概述 图像写入是将数字图像数据存储到文件或内存中的过程。它在图像处理、计算机视觉和数据科学等领域中至关重要。图像写入工具有多种,每种工具都有其独特的优点和缺点。了解这些工具的特性和性能差异对于选择最适合特定应用的工具至关重要。 # 2. 图像写入工具比较 ### 2.1
recommend-type

idea preferences

IntelliJ IDEA是一个强大的集成开发环境(IDE),它提供了丰富的配置选项,称为"Preferences"或"Settings",这些设置可以帮助你个性化你的开发体验并优化各种功能。 1. IDEA Preferences: 这些设置通常位于菜单栏的"File" > "Settings" (Windows/Linux) 或 "IntelliJ IDEA" > "Preferences" (macOS)。在这里,你可以调整: - 编辑器相关设置:字体、颜色主题、代码样式等。 - 工作空间和项目设置:项目结构、构建工具、版本控制配置等。 - 插件管理:启用或禁用插件,
recommend-type

DC/DC变换器动态建模与控制方法解析

"电力电子系统建模及控制1.ppt" 电力电子系统建模与控制是电力工程中的核心领域,尤其对于DC/DC变换器这样的关键组件。DC/DC变换器在许多应用中扮演着至关重要的角色,如电源管理、电动汽车电池管理系统等。本资料主要探讨了如何对DC/DC变换器进行动态建模,以便于理解和优化其性能。 首先,电力电子系统通常包括四个主要部分:电力电子变换器、PWM(脉宽调制)调制器、驱动电路和反馈控制单元。这些组成部分共同作用,决定了系统的静态和动态性能。反馈控制的设计是提升系统性能的关键,而这就需要对被控对象——即DC/DC变换器及其相关的PWM调制器——有深入的动态模型理解。在经典控制理论中,传递函数是描述系统动态响应的重要工具,通过分析传递函数,可以设计出合适的反馈控制网络,以改善系统性能。 第1章重点介绍了DC/DC变换器的动态建模方法,特别是状态平均的概念。由于变换器中存在非线性元件,如功率开关和二极管,使得系统整体是非线性的。然而,当系统运行在某个稳定的工作点附近时,对于小信号扰动,系统行为可以近似为线性。这种线性化的方法被称为状态空间平均,它允许我们将非线性系统简化为线性系统来分析,从而简化了建模过程。 状态平均方法的应用是在稳态工作点附近,通过引入小幅度的占空比扰动。例如,假设Buck DC/DC变换器的占空比d(t)在D附近有一个小扰动Dmsinωmt,其中Dm是扰动幅度,ωm是调制频率。这个低频扰动导致输出电压出现与之对应的低频调制,且调制频率与输入信号频率相同。如果开关频率及其谐波分量相对较小,那么可以通过忽略这些高频成分,仅考虑低频调制来近似系统的动态行为,此时可以使用传递函数描述DC/DC变换器的特性。 这一建模技术对于设计高性能的反馈控制系统至关重要,因为它允许工程师预测系统对各种输入变化的响应,并据此优化控制器参数。通过精确的动态模型,可以设计出能够快速响应、抑制噪声和提高效率的控制策略。此外,这种方法还为系统故障诊断和预防提供了基础,因为理解系统的动态行为可以帮助识别潜在的问题并提前采取措施。 DC/DC变换器的动态建模是电力电子系统控制的基础,状态平均法提供了一种有效且实用的分析手段,使得我们能够对复杂的非线性系统进行有效的线性化处理,从而进行更深入的控制设计和优化。这一领域的深入研究对于提高电力电子设备的性能和可靠性具有重要意义。
recommend-type

关系数据表示学习

关系数据卢多维奇·多斯桑托斯引用此版本:卢多维奇·多斯桑托斯。关系数据的表示学习机器学习[cs.LG]。皮埃尔和玛丽·居里大学-巴黎第六大学,2017年。英语。NNT:2017PA066480。电话:01803188HAL ID:电话:01803188https://theses.hal.science/tel-01803188提交日期:2018年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaireUNIVERSITY PIERRE和 MARIE CURIE计算机科学、电信和电子学博士学院(巴黎)巴黎6号计算机科学实验室D八角形T HESIS关系数据表示学习作者:Ludovic DOS SAntos主管:Patrick GALLINARI联合主管:本杰明·P·伊沃瓦斯基为满足计算机科学博士学位的要求而提交的论文评审团成员:先生蒂埃里·A·退休记者先生尤尼斯·B·恩