train_loss += loss.cpu().item()
时间: 2024-05-24 22:12:31 浏览: 135
This line of code extracts the value of the loss function (which is a torch.Tensor object) as a scalar value (i.e., a float) and stores it in the variable train_loss. The .cpu() method is used to move the tensor from GPU to CPU (if it was on GPU), and the .item() method is used to return the scalar value of the tensor.
相关问题
解释这段代码for epochs in range(Epochs): loss_mean_train = 0 r2_mean_train = 0 loss_mean_test = 0 r2_mean_test = 0 model.train() for data_l in train_loader: seq, labels = data_l seq, labels = seq.to(device), labels.to(device) optimizer.zero_grad() y_pred = model(seq) labels = torch.squeeze(labels) single_loss = 0 r2_train = 0 for k in range(output_size): single_loss = single_loss + loss_function(y_pred[:, k], labels[:, k]) try: r2_train = r2_train+r2_score(y_pred[:, k].cpu().detach().numpy(), labels[:, k].cpu().detach().numpy()) except: r2_train = 0 single_loss /= output_size nn.utils.clip_grad_norm_(model.parameters(), 1.0) single_loss.backward() optimizer.step() r2_train /=output_size loss_mean_train += single_loss.item() r2_mean_train += r2_train scheduler.step() model.eval() for data_l in test_loader: single_loss = 0 r2_test = 0 seq, labels = data_l seq, labels = seq.to(device), labels.to(device) y_pred = model(seq) for k in range(output_size): single_loss = single_loss + loss_function(y_pred[:, k], labels[:, k]) try: r2_test = r2_test+r2_score(y_pred[:, k].cpu().detach().numpy(), labels[:, k].cpu().detach().numpy()) except: r2_test = 0 single_loss_test = single_loss / output_size r2_test /=output_size loss_mean_test += single_loss.item() r2_mean_test +=r2_test
这段代码是一个训练循环。首先,它设置了一些变量(loss_mean_train、r2_mean_train、loss_mean_test、r2_mean_test)用于记录训练和测试期间的损失和R2得分的平均值。
然后,它将模型设置为训练模式,遍历训练数据集中的批次,并对每个批次进行以下操作:
1.将批次中的序列和标签移动到所选设备上(如GPU);
2.将优化器的梯度清零;
3.使用模型对序列进行预测;
4.计算每个标签的损失和R2得分;
5.将每个标签的损失求平均值,并将梯度传递回模型,并通过调用优化器来更新模型的参数。
在训练数据集的每个批次上完成这些操作后,代码会调用scheduler对象来更新学习率。
接下来,代码将模型设置为评估模式并遍历测试数据集中的批次,对每个批次执行以下操作:
1.将批次中的序列和标签移动到所选设备上(如GPU);
2.使用模型对序列进行预测;
3.计算每个标签的损失和R2得分;
4.将每个标签的损失求平均值,并将其添加到测试集的平均损失中,并将R2得分添加到测试集的平均R2得分中。
最后,训练循环结束后,会返回损失和R2得分的平均值,以便在训练期间进行监控和评估。
def train(device, model, opt, loss_fn, train_loader): model.train() epoch_loss = 0 f1 = [] for g in train_loader: g = g.to(device) feat = g.ndata['feat'] label = g.ndata['label'] logits = model(g, feat) loss = loss_fn(logits, label) f1.append(get_f1(logits.detach().cpu().numpy(), label.detach().cpu().numpy())) epoch_loss += loss.data.item() opt.zero_grad() loss.backward() opt.step() return epoch_loss / len(train_loader), np.mean(f1),写一个train_loader以调用该函数
这里提供一个简单的train_loader示例:
```
from torch.utils.data import Dataset, DataLoader
class GraphDataset(Dataset):
def __init__(self, graphs, targets):
self.graphs = graphs
self.targets = targets
def __len__(self):
return len(self.graphs)
def __getitem__(self, idx):
return self.graphs[idx], self.targets[idx]
train_dataset = GraphDataset(train_graphs, train_targets)
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
```
其中,`train_graphs` 是一个包含多个图的列表,而 `train_targets` 是相应的目标标签。`GraphDataset` 类将每个图和其对应的标签打包成一个数据样本,并且通过 `DataLoader` 对象以批量的方式进行训练。在训练时,可以使用 `train()` 函数进行模型训练和评估。
阅读全文