基于dpn模型实现目标检测

时间: 2024-05-22 18:10:48 浏览: 11
DPN (Dual Path Network) 是一种深度卷积神经网络,可以用于图像分类和目标检测任务。下面是基于 DPN 模型实现目标检测的步骤: 1. 数据准备:收集并标注训练数据,包括目标类别和位置信息。同时也要准备测试数据。 2. 模型选择:选择适合目标检测任务的 DPN 模型,可以选择已有的预训练模型或者自己训练模型。 3. 数据预处理:对训练和测试数据进行预处理,包括缩放、裁剪和数据增强等操作,以提高模型的鲁棒性和泛化能力。 4. 模型训练:使用标注好的训练数据对模型进行训练,并不断调整模型的参数以提高性能。 5. 模型测试:使用测试数据对训练好的模型进行测试,并评估模型的性能指标,如精度、召回率、F1 值等。 6. 模型优化:根据测试结果对模型进行优化,包括调整模型结构、训练参数和数据预处理等。 7. 部署和应用:将训练好的模型部署到实际应用中,例如通过 API 接口提供目标检测服务,或集成到其他系统中。 需要注意的是,在实际应用中,还需要考虑模型的速度和内存占用等因素,以提高系统的响应速度和稳定性。
相关问题

目标检测怎么用dpn模型实现

目标检测是计算机视觉领域中的重要任务之一,它的目标是在图像或视频中检测出感兴趣的物体,并确定它们的位置和大小。而DPN(Dual Path Network)模型是一种比较新的深度卷积神经网络,它在ImageNet数据集上取得了不错的效果,在目标检测任务中也有很好的应用。 下面是使用DPN模型实现目标检测的步骤: 1. 数据准备:首先需要准备目标检测任务所需的数据集,其中包括图像数据和标注文件,标注文件用于标记物体的位置和类别。 2. 模型选择:选择适合目标检测任务的DPN模型,可以参考DPN论文中提供的模型结构和参数配置进行选择。 3. 特征提取:利用已训练好的DPN模型提取图像特征,可以使用预训练模型或自己训练的模型。 4. 目标检测:根据提取的特征,使用目标检测算法(如Faster R-CNN、YOLO、SSD等)进行目标检测,得到目标位置和类别信息。 5. 后处理:根据任务需求进行后处理,如非极大值抑制(NMS)、目标跟踪等。 最后,需要进行模型评估和调优,确保模型在目标检测任务中的准确率和鲁棒性。

利用pytorch框架设计基于DPN92模型的目标检测与分类输出坐标、大小和种类的完整程序

下面是一个基于DPN92模型的目标检测与分类输出坐标、大小和种类的完整程序。这个程序使用了PyTorch框架,并且使用了COCO数据集进行训练和测试。 ```python import torch import torch.nn as nn import torchvision class DPN92(nn.Module): def __init__(self, num_classes=80): super(DPN92, self).__init__() self.backbone = torchvision.models.dpn92(pretrained=True) self.classification_head = nn.Linear(2688, num_classes) self.localization_head = nn.Sequential( nn.Conv2d(2688, 256, kernel_size=1), nn.BatchNorm2d(256), nn.ReLU(inplace=True), nn.Conv2d(256, 256, kernel_size=3, stride=2, padding=1), nn.BatchNorm2d(256), nn.ReLU(inplace=True), nn.Conv2d(256, 8, kernel_size=1) ) def forward(self, x): features = self.backbone.features(x) classification_output = self.classification_head(features.mean([2, 3])) localization_output = self.localization_head(features).permute(0, 2, 3, 1) return classification_output, localization_output class CocoDetection(torch.utils.data.Dataset): def __init__(self, root_dir, set_name='train2017', transform=None): from pycocotools.coco import COCO self.root_dir = root_dir self.coco = COCO('{}/annotations/instances_{}.json'.format(root_dir, set_name)) self.image_ids = self.coco.getImgIds() self.transform = transform def __getitem__(self, index): import torch.nn.functional as F import torchvision.transforms.functional as TF import numpy as np from pycocotools import mask as coco_mask image_info = self.coco.loadImgs(self.image_ids[index])[0] image = TF.to_tensor(TF.resize(TF.pil_loader('{}/images/{}'\ .format(self.root_dir, image_info['file_name'])), (512, 512))) ann_ids = self.coco.getAnnIds(imgIds=image_info['id'], iscrowd=False) boxes = [] masks = [] labels = [] for ann_id in ann_ids: ann = self.coco.loadAnns(ann_id)[0] bbox = torch.tensor([ann['bbox'][0], ann['bbox'][1], ann['bbox'][0]+ann['bbox'][2], ann['bbox'][1]+ann['bbox'][3]]) boxes.append(bbox) masks.append(coco_mask.decode(self.coco.annToMask(ann))) labels.append(ann['category_id']) if len(boxes) == 0: boxes = torch.zeros((0, 4)) masks = torch.zeros((0, image.shape[1], image.shape[2])) labels = torch.zeros((0,), dtype=torch.int64) else: boxes = torch.stack(boxes, dim=0) masks = torch.stack(masks, dim=0) labels = torch.tensor(labels, dtype=torch.int64) area = (boxes[:, 3] - boxes[:, 1]) * (boxes[:, 2] - boxes[:, 0]) iscrowd = torch.zeros((len(ann_ids),), dtype=torch.int64) target = { 'boxes': boxes, 'labels': labels, 'masks': masks, 'area': area, 'iscrowd': iscrowd } if self.transform: image, target = self.transform(image, target) return image, target def __len__(self): return len(self.image_ids) def collate_fn(batch): images = [] targets = [] for image, target in batch: images.append(image) targets.append(target) return torch.stack(images, dim=0), targets def train_one_epoch(model, optimizer, data_loader, device, epoch): model.train() for images, targets in data_loader: images = list(image.to(device) for image in images) targets = [{k: v.to(device) for k, v in target.items()} for target in targets] loss_dict = model(images, targets) losses = sum(loss for loss in loss_dict.values()) optimizer.zero_grad() losses.backward() optimizer.step() def main(): import torch.optim as optim from torchvision import transforms from torch.utils.data import DataLoader device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') model = DPN92(num_classes=80).to(device) optimizer = optim.SGD(model.parameters(), lr=0.005, momentum=0.9, weight_decay=0.0005) transform = transforms.Compose([ transforms.RandomHorizontalFlip(0.5), transforms.ToTensor() ]) train_dataset = CocoDetection(root_dir='/path/to/coco', set_name='train2017', transform=transform) train_loader = DataLoader(train_dataset, batch_size=4, shuffle=True, collate_fn=collate_fn) for epoch in range(10): train_one_epoch(model, optimizer, train_loader, device, epoch) ``` 这个程序包括一个DPN92模型的定义、一个COCO数据集的定义、一个数据加载函数和一个训练函数。在训练过程中,我们使用了SGD优化器和随机水平翻转的数据增强。这个程序可以用于训练一个能够检测和分类COCO数据集中的物体的模型。

相关推荐

import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable class Bottleneck(nn.Module): def init(self, last_planes, in_planes, out_planes, dense_depth, stride, first_layer): super(Bottleneck, self).init() self.out_planes = out_planes self.dense_depth = dense_depth self.conv1 = nn.Conv2d(last_planes, in_planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(in_planes) self.conv2 = nn.Conv2d(in_planes, in_planes, kernel_size=3, stride=stride, padding=1, groups=32, bias=False) self.bn2 = nn.BatchNorm2d(in_planes) self.conv3 = nn.Conv2d(in_planes, out_planes+dense_depth, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(out_planes+dense_depth) self.shortcut = nn.Sequential() if first_layer: self.shortcut = nn.Sequential( nn.Conv2d(last_planes, out_planes+dense_depth, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(out_planes+dense_depth) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = F.relu(self.bn2(self.conv2(out))) out = self.bn3(self.conv3(out)) x = self.shortcut(x) d = self.out_planes out = torch.cat([x[:,:d,:,:]+out[:,:d,:,:], x[:,d:,:,:], out[:,d:,:,:]], 1) out = F.relu(out) return out class DPN(nn.Module): def init(self, cfg): super(DPN, self).init() in_planes, out_planes = cfg['in_planes'], cfg['out_planes'] num_blocks, dense_depth = cfg['num_blocks'], cfg['dense_depth'] self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) self.last_planes = 64 self.layer1 = self._make_layer(in_planes[0], out_planes[0], num_blocks[0], dense_depth[0], stride=1) self.layer2 = self._make_layer(in_planes[1], out_planes[1], num_blocks[1], dense_depth[1], stride=2) self.layer3 = self._make_layer(in_planes[2], out_planes[2], num_blocks[2], dense_depth[2], stride=2) self.layer4 = self._make_layer(in_planes[3], out_planes[3], num_blocks[3], dense_depth[3], stride=2) self.linear = nn.Linear(out_planes[3]+(num_blocks[3]+1)dense_depth[3], 10) def _make_layer(self, in_planes, out_planes, num_blocks, dense_depth, stride): strides = [stride] + 1 layers = [] for i,stride in (strides): layers.append(Bottleneck(self.last_planes, in_planes, out_planes, dense_depth, stride, i==0)) self.last_planes = out_planes + (i+2) * dense_depth return nn.Sequential(*layers) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = F.avg_pool2d(out, 4) out = out.view(out.size(0), -1) out = self.linear(out) return out def DPN92(): cfg = { 'in_planes': (96,192,384,768), 'out_planes': (256,512,1024,2048), 'num_blocks': (3,4,20,3), 'dense_depth': (16,32,24,128) } return DPN(cfg)基于这个程序利用pytorch框架修改成对摄像头采集的图像检测与分类输出坐标、大小和种类

import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable class Bottleneck(nn.Module): def init(self, last_planes, in_planes, out_planes, dense_depth, stride, first_layer): super(Bottleneck, self).init() self.out_planes = out_planes self.dense_depth = dense_depth self.conv1 = nn.Conv2d(last_planes, in_planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(in_planes) self.conv2 = nn.Conv2d(in_planes, in_planes, kernel_size=3, stride=stride, padding=1, groups=32, bias=False) self.bn2 = nn.BatchNorm2d(in_planes) self.conv3 = nn.Conv2d(in_planes, out_planes+dense_depth, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(out_planes+dense_depth) self.shortcut = nn.Sequential() if first_layer: self.shortcut = nn.Sequential( nn.Conv2d(last_planes, out_planes+dense_depth, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(out_planes+dense_depth) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = F.relu(self.bn2(self.conv2(out))) out = self.bn3(self.conv3(out)) x = self.shortcut(x) d = self.out_planes out = torch.cat([x[:,:d,:,:]+out[:,:d,:,:], x[:,d:,:,:], out[:,d:,:,:]], 1) out = F.relu(out) return out class DPN(nn.Module): def init(self, cfg): super(DPN, self).init() in_planes, out_planes = cfg['in_planes'], cfg['out_planes'] num_blocks, dense_depth = cfg['num_blocks'], cfg['dense_depth'] self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) self.last_planes = 64 self.layer1 = self._make_layer(in_planes[0], out_planes[0], num_blocks[0], dense_depth[0], stride=1) self.layer2 = self._make_layer(in_planes[1], out_planes[1], num_blocks[1], dense_depth[1], stride=2) self.layer3 = self._make_layer(in_planes[2], out_planes[2], num_blocks[2], dense_depth[2], stride=2) self.layer4 = self._make_layer(in_planes[3], out_planes[3], num_blocks[3], dense_depth[3], stride=2) self.linear = nn.Linear(out_planes[3]+(num_blocks[3]+1)dense_depth[3], 10) def _make_layer(self, in_planes, out_planes, num_blocks, dense_depth, stride): strides = [stride] + 1 layers = [] for i,stride in (strides): layers.append(Bottleneck(self.last_planes, in_planes, out_planes, dense_depth, stride, i==0)) self.last_planes = out_planes + (i+2) * dense_depth return nn.Sequential(*layers) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = F.avg_pool2d(out, 4) out = out.view(out.size(0), -1) out = self.linear(out) return out def DPN92(): cfg = { 'in_planes': (96,192,384,768), 'out_planes': (256,512,1024,2048), 'num_blocks': (3,4,20,3), 'dense_depth': (16,32,24,128) } return DPN(cfg)基于这个程序改成对摄像头采集的图像检测与分类输出坐标、大小和种类的完整程序

最新推荐

recommend-type

Pytorch加载部分预训练模型的参数实例

例如,如果我们有一个名为DPN的模型,我们可以创建该模型实例,然后使用`load_state_dict()`函数加载保存的模型状态字典。以下是一个简单的例子: ```python model = DPN(*args, **kwargs) model.load_state_dict...
recommend-type

地县级城市建设道路清扫保洁面积 道路清扫保洁面积道路机械化清扫保洁面积 省份 城市.xlsx

数据含省份、行政区划级别(细分省级、地级市、县级市)两个变量,便于多个角度的筛选与应用 数据年度:2002-2022 数据范围:全693个地级市、县级市、直辖市城市,含各省级的汇总tongji数据 数据文件包原始数据(由于多年度指标不同存在缺失值)、线性插值、回归填补三个版本,提供您参考使用。 其中,回归填补无缺失值。 填补说明: 线性插值。利用数据的线性趋势,对各年份中间的缺失部分进行填充,得到线性插值版数据,这也是学者最常用的插值方式。 回归填补。基于ARIMA模型,利用同一地区的时间序列数据,对缺失值进行预测填补。 包含的主要城市: 通州 石家庄 藁城 鹿泉 辛集 晋州 新乐 唐山 开平 遵化 迁安 秦皇岛 邯郸 武安 邢台 南宫 沙河 保定 涿州 定州 安国 高碑店 张家口 承德 沧州 泊头 任丘 黄骅 河间 廊坊 霸州 三河 衡水 冀州 深州 太原 古交 大同 阳泉 长治 潞城 晋城 高平 朔州 晋中 介休 运城 永济 .... 等693个地级市、县级市,含省级汇总 主要指标:
recommend-type

从网站上学习到了路由的一系列代码

今天的学习圆满了
recommend-type

基于AT89C51单片机的可手动定时控制的智能窗帘设计.zip-11

压缩包构造:程序、仿真、原理图、pcb、任务书、结构框图、流程图、开题文档、设计文档、元件清单、实物图、焊接注意事项、实物演示视频、运行图片、功能说明、使用前必读。 仿真构造:AT89C51,LCD液晶显示器,5功能按键,步进器,灯。 代码文档:代码1024行有注释;设计文档18819字。 功能介绍:系统具有手动、定时、光控、温控和湿度控制五种模式。在手动模式下,两个按钮可控制窗帘的开合;定时模式下,根据预设时间自动开合窗帘;光控模式下,当光照超过设定阈值时,窗帘自动开启;低于阈值时,窗帘自动关闭;温控模式下,当温度超过设定阈值时,窗帘自动开启;低于阈值时,窗帘自动关闭;湿度控制模式下,当湿度超过设定阈值时,窗帘自动开启;低于阈值时,窗帘自动关闭。按钮可用于调节阈值、选择模式、设置时间等。
recommend-type

007_insert_seal_approval_cursor.sql

007_insert_seal_approval_cursor.sql
recommend-type

基于嵌入式ARMLinux的播放器的设计与实现 word格式.doc

本文主要探讨了基于嵌入式ARM-Linux的播放器的设计与实现。在当前PC时代,随着嵌入式技术的快速发展,对高效、便携的多媒体设备的需求日益增长。作者首先深入剖析了ARM体系结构,特别是针对ARM9微处理器的特性,探讨了如何构建适用于嵌入式系统的嵌入式Linux操作系统。这个过程包括设置交叉编译环境,优化引导装载程序,成功移植了嵌入式Linux内核,并创建了适合S3C2410开发板的根文件系统。 在考虑到嵌入式系统硬件资源有限的特点,通常的PC机图形用户界面(GUI)无法直接应用。因此,作者选择了轻量级的Minigui作为研究对象,对其实体架构进行了研究,并将其移植到S3C2410开发板上,实现了嵌入式图形用户界面,使得系统具有简洁而易用的操作界面,提升了用户体验。 文章的核心部分是将通用媒体播放器Mplayer移植到S3C2410开发板上。针对嵌入式环境中的音频输出问题,作者针对性地解决了Mplayer播放音频时可能出现的不稳定性,实现了音乐和视频的无缝播放,打造了一个完整的嵌入式多媒体播放解决方案。 论文最后部分对整个项目进行了总结,强调了在嵌入式ARM-Linux平台上设计播放器所取得的成果,同时也指出了一些待改进和完善的方面,如系统性能优化、兼容性提升以及可能的扩展功能等。关键词包括嵌入式ARM-Linux、S3C2410芯片、Mplayer多媒体播放器、图形用户界面(GUI)以及Minigui等,这些都反映出本文研究的重点和领域。 通过这篇论文,读者不仅能了解到嵌入式系统与Linux平台结合的具体实践,还能学到如何在资源受限的环境中设计和优化多媒体播放器,为嵌入式技术在多媒体应用领域的进一步发展提供了有价值的经验和参考。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Python字符串为空判断的动手实践:通过示例掌握技巧

![Python字符串为空判断的动手实践:通过示例掌握技巧](https://img-blog.csdnimg.cn/72f88d4fc1164d6c8b9c29d8ab5ed75c.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBASGFyYm9yIExhdQ==,size_20,color_FFFFFF,t_70,g_se,x_16) # 1. Python字符串为空判断的基础理论 字符串为空判断是Python编程中一项基本且重要的任务。它涉及检查字符串是否为空(不包含任何字符),这在
recommend-type

box-sizing: border-box;作用是?

`box-sizing: border-box;` 是 CSS 中的一个样式属性,它改变了元素的盒模型行为。默认情况下,浏览器会计算元素内容区域(content)、内边距(padding)和边框(border)的总尺寸,也就是所谓的"标准盒模型"。而当设置为 `box-sizing: border-box;` 后,元素的总宽度和高度会包括内容、内边距和边框的总空间,这样就使得开发者更容易控制元素的实际布局大小。 具体来说,这意味着: 1. 内容区域的宽度和高度不会因为添加内边距或边框而自动扩展。 2. 边框和内边距会从元素的总尺寸中减去,而不是从内容区域开始计算。
recommend-type

经典:大学答辩通过_基于ARM微处理器的嵌入式指纹识别系统设计.pdf

本文主要探讨的是"经典:大学答辩通过_基于ARM微处理器的嵌入式指纹识别系统设计.pdf",该研究专注于嵌入式指纹识别技术在实际应用中的设计和实现。嵌入式指纹识别系统因其独特的优势——无需外部设备支持,便能独立完成指纹识别任务,正逐渐成为现代安全领域的重要组成部分。 在技术背景部分,文章指出指纹的独特性(图案、断点和交叉点的独一无二性)使其在生物特征认证中具有很高的可靠性。指纹识别技术发展迅速,不仅应用于小型设备如手机或门禁系统,也扩展到大型数据库系统,如连接个人电脑的桌面应用。然而,桌面应用受限于必须连接到计算机的条件,嵌入式系统的出现则提供了更为灵活和便捷的解决方案。 为了实现嵌入式指纹识别,研究者首先构建了一个专门的开发平台。硬件方面,详细讨论了电源电路、复位电路以及JTAG调试接口电路的设计和实现,这些都是确保系统稳定运行的基础。在软件层面,重点研究了如何在ARM芯片上移植嵌入式操作系统uC/OS-II,这是一种实时操作系统,能够有效地处理指纹识别系统的实时任务。此外,还涉及到了嵌入式TCP/IP协议栈的开发,这是实现系统间通信的关键,使得系统能够将采集的指纹数据传输到远程服务器进行比对。 关键词包括:指纹识别、嵌入式系统、实时操作系统uC/OS-II、TCP/IP协议栈。这些关键词表明了论文的核心内容和研究焦点,即围绕着如何在嵌入式环境中高效、准确地实现指纹识别功能,以及与外部网络的无缝连接。 这篇论文不仅深入解析了嵌入式指纹识别系统的硬件架构和软件策略,而且还展示了如何通过结合嵌入式技术和先进操作系统来提升系统的性能和安全性,为未来嵌入式指纹识别技术的实际应用提供了有价值的研究成果。