for i in range(0, len(gt)): if int(gt[i][1]) < img.shape[0] and int(gt[i][0]) < img.shape[1]: gt_density_map[int(gt[i][1]), int(gt[i][0])] = 1 是什么意思

时间: 2023-10-05 07:12:49 浏览: 83
这段代码是根据一组坐标信息(`gt`),在一个名为`gt_density_map`的密度图中将对应的像素位置置为1。 首先,通过循环迭代`gt`中的每个元素,其中`len(gt)`表示`gt`的长度(元素个数)。在每次迭代中,通过`gt[i]`来访问第`i`个元素。 接下来,通过`int(gt[i][1])`和`int(gt[i][0])`将坐标值转换为整数类型。这里假设`gt`是一个二维数组,其中每个元素是一个包含两个坐标值的数组,例如`[x, y]`。`gt[i][1]`表示第`i`个元素中的纵坐标值,而`gt[i][0]`则表示横坐标值。 然后,通过条件判断语句 `if int(gt[i][1]) < img.shape[0] and int(gt[i][0]) < img.shape[1]:` 来检查这些坐标是否在图像的范围内。这里使用了 `img.shape[0]` 和 `img.shape[1]` 来获取图像的高度和宽度。 最后,如果坐标在图像范围内,就将 `gt_density_map` 中对应位置的像素值置为1,表示该位置存在目标物体。 总结起来,这段代码的作用是根据给定的坐标信息,在密度图中标记出坐标对应的像素位置。这可能是为了在图像中标注目标物体的位置。
相关问题

import numpy as np import cv2 def ComputeMinLevel(hist, pnum): index = np.add.accumulate(hist) return np.argwhere(index>pnum * 8.3 * 0.01)[0][0] def ComputeMaxLevel(hist, pnum): hist_0 = hist[::-1] Iter_sum = np.add.accumulate(hist_0) index = np.argwhere(Iter_sum > (pnum * 2.2 * 0.01))[0][0] return 255-index def LinearMap(minlevel, maxlevel): if (minlevel >= maxlevel): return [] else: index = np.array(list(range(256))) screenNum = np.where(index<minlevel,0,index) screenNum = np.where(screenNum> maxlevel,255,screenNum) for i in range(len(screenNum)): if screenNum[i]> 0 and screenNum[i] < 255: screenNum[i] = (i - minlevel) / (maxlevel - minlevel) * 255 return screenNum def CreateNewImg(img): h, w, d = img.shape newimg = np.zeros([h, w, d]) for i in range(d): imghist = np.bincount(img[:, :, i].reshape(1, -1)[0]) minlevel = ComputeMinLevel(imghist, h * w) maxlevel = ComputeMaxLevel(imghist, h * w) screenNum = LinearMap(minlevel, maxlevel) if (screenNum.size == 0): continue for j in range(h): newimg[j, :, i] = screenNum[img[j, :, i]] return newimg if __name__ == '__main__': img = cv2.imread('D:\shujuji\wu\\Image_20230225221250865.jpg') newimg = CreateNewImg(img) cv2.imshow('original_img', img) cv2.imshow('new_img', newimg / 200) cv2.waitKey(0) cv2.destroyAllWindows()修改调整图片大小

抱歉,根据您提供的代码,我无法直接回答您的问题。该代码是用Python和OpenCV库编写的图像处理程序,用于调整图像的亮度和对比度。如果您需要调整图片大小,可以使用OpenCV的resize()函数。例如,可以使用以下代码将图像大小调整为宽度为400像素,高度按比例缩放: ```python resized_img = cv2.resize(img, (400, int(img.shape[0]*400/img.shape[1]))) ``` 其中,img是原始图像,resized_img是调整大小后的图像。您可以将其放置在CreateNewImg()函数后面,以获得调整大小后的图像。

myimage = cv.cvtColor(img, cv.COLOR_BGR2GRAY) ret, img1 = cv.threshold(myimage, 100, 255, cv.THRESH_BINARY_INV) # cv.namedWindow('img1',0) # cv.resizeWindow('img1',600,600) # cv.imshow('img1',img1) # print(type(img1)) # print(img1.shape) # print(img1.size) # cv.waitKey(2) kernel1 = np.ones((10, 10), np.uint8) # 做一次膨胀 img2 = cv.dilate(img1, kernel1) # cv.namedWindow('img2', 0) # cv.resizeWindow('img2', 600, 600) # cv.imshow('img2', img2) contours, hierarchy = cv.findContours(img2, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_NONE) # print(len(contours),hierarchy) for i in range(len(contours)): area = cv.contourArea(contours[i]) if area < 150: # '设定连通域最小阈值,小于该值被清理' cv.drawContours(img2, [contours[i]], 0, 0, -1) # import pdb;pdb.set_trace() # cv.imwrite('yuchuli.jpg', img2) ###########预处理 # import pdb;pdb.set_trace() not_row = img2[[not np.all(img2[i] == 0) for i in range(img2.shape[0])], :] bot_col = not_row[:, [not np.all(not_row[:, i] == 0) for i in range(not_row.shape[1])]] # import pdb;pdb.set_trace() # print(bot_col.shape) if bot_col.shape[0] > bot_col.shape[1]: if bot_col.shape[1] % 2 == 0: img_new = np.concatenate((np.zeros([bot_col.shape[0], int((bot_col.shape[0] - bot_col.shape[1]) / 2)]), bot_col, np.zeros([bot_col.shape[0], int((bot_col.shape[0] - bot_col.shape[1]) / 2)])), 1) if bot_col.shape[1] % 2 == 1: img_new = np.concatenate((np.zeros( [bot_col.shape[0], int((bot_col.shape[0] - bot_col.shape[1] - 1) / 2)]), bot_col, np.zeros( [bot_col.shape[0], int((bot_col.shape[0] - bot_col.shape[1] + 1) / 2)])), 1) cv.imwrite('fenge.jpg', img_new) ###########分割 file_path = 'fenge.jpg' return file_path这个具体以何种方法进行分割的

这段代码使用了 OpenCV 库中的图像处理函数实现了字符图片的分割。下面是代码的具体实现细节: 首先,将彩色图像转换为灰度图像,并使用二值化方法将图像转换为黑白图像。 ```python myimage = cv.cvtColor(img, cv.COLOR_BGR2GRAY) ret, img1 = cv.threshold(myimage, 100, 255, cv.THRESH_BINARY_INV) ``` 接着,使用膨胀操作将字符区域扩大。 ```python kernel1 = np.ones((10, 10), np.uint8) # 做一次膨胀 img2 = cv.dilate(img1, kernel1) ``` 然后,使用 `findContours` 函数寻找图像中的轮廓,并根据轮廓的面积进行过滤,去除面积过小的连通域。 ```python contours, hierarchy = cv.findContours(img2, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_NONE) for i in range(len(contours)): area = cv.contourArea(contours[i]) if area < 150: cv.drawContours(img2, [contours[i]], 0, 0, -1) ``` 接下来,根据字符区域的位置,将字符图片进行裁剪,得到多个字符图片。 ```python not_row = img2[[not np.all(img2[i] == 0) for i in range(img2.shape[0])], :] bot_col = not_row[:, [not np.all(not_row[:, i] == 0) for i in range(not_row.shape[1])]] if bot_col.shape[0] > bot_col.shape[1]: if bot_col.shape[1] % 2 == 0: img_new = np.concatenate((np.zeros([bot_col.shape[0], int((bot_col.shape[0] - bot_col.shape[1]) / 2)]), bot_col, np.zeros([bot_col.shape[0], int((bot_col.shape[0] - bot_col.shape[1]) / 2)])), 1) if bot_col.shape[1] % 2 == 1: img_new = np.concatenate((np.zeros( [bot_col.shape[0], int((bot_col.shape[0] - bot_col.shape[1] - 1) / 2)]), bot_col, np.zeros( [bot_col.shape[0], int((bot_col.shape[0] - bot_col.shape[1] + 1) / 2)])), 1) ``` 最后,将裁剪后的字符图片保存到文件中,并返回文件路径。 ```python cv.imwrite('fenge.jpg', img_new) file_path = 'fenge.jpg' return file_path ``` 整个过程中使用的方法包括二值化、膨胀、轮廓检测和裁剪等,这些方法常用于字符图片的处理和识别。
阅读全文

相关推荐

import cv2 import numpy as np import os # 定义文件夹路径和结果保存路径 folder_path = 'D:\wzk\JIEMIAN\images' result_path = 'D:\wzk\JIEMIAN\Result\ORB-pj.jpg' # 获取文件夹内所有图像路径 img_paths = [os.path.join(folder_path, f) for f in os.listdir(folder_path) if f.endswith('.jpg')] # 遍历所有图像,进行配准拼接 result = cv2.imread(img_paths[0]) for i in range(1, len(img_paths)): img = cv2.imread(img_paths[i]) # 将两幅图像转换为灰度图像 gray1 = cv2.cvtColor(result, cv2.COLOR_BGR2GRAY) gray2 = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 提取图像特征点 orb = cv2.ORB_create() kp1, des1 = orb.detectAndCompute(gray1, None) kp2, des2 = orb.detectAndCompute(gray2, None) # 匹配特征点 matcher = cv2.DescriptorMatcher_create(cv2.DESCRIPTOR_MATCHER_BRUTEFORCE_HAMMING) matches = matcher.match(des1, des2) # 选择最佳匹配点 matches = sorted(matches, key=lambda x: x.distance) good_matches = matches[:int(len(matches)*0.15)] # 计算变换矩阵 src_pts = np.float32([kp1[m.queryIdx].pt for m in good_matches]).reshape(-1, 1, 2) dst_pts = np.float32([kp2[m.trainIdx].pt for m in good_matches]).reshape(-1, 1, 2) M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0) # 拼接图像 result = cv2.warpPerspective(result, M, (result.shape[1] + img.shape[1], result.shape[0])) result[0:img.shape[0], result.shape[1]-img.shape[1]:] = img # 保存拼接结果 cv2.imwrite(result_path, result) # 显示结果 cv2.namedWindow("Result",cv2.WINDOW_NORMAL) cv2.imshow('Result', result) cv2.waitKey(0) cv2.destroyAllWindows()

找一下以下代码的错误:# 后端代码求解圆心坐标 import cv2 import numpy as np # 读入图片 img = cv2.imread('D:\Desktop\weixinallwork\chess.png') # 获取图片长宽 height, width = img.shape[:2] print(height) print(width) # 计算每个圆的半径 width = max(width, height) height = min(width, height) print(height) print(width) a = int(width / 7) / 2 # 横坐标12等分 b = int(height / 2) / 2 # 纵坐标8等分 c = int(a) d = int(b) r = min(c, d) # print(r) count = 0 # 计算圆心坐标 centers = [] for j in range(2): # 俩次循环 先按行 for i in range(7): # 后按列 x = 2 * r * j + r y = 2 * r * i + r centers.append((x, y)) count = count + 1 print(f'圆心坐标({x}, {y})') # print(count) # print(centers) import numpy as np circles = np.array([[centers],r]) # 创建一个二维数组用于保存每个圆的灰度值 gray_values = np.zeros((len(circles),)) # 遍历每个圆 for i in range(len(circles)): # 提取当前圆的参数 x, y = circles[i][0] r = circles[i][1] # 通过圆心坐标和半径在原始图像中裁剪出当前圆 mask = np.zeros_like(img) cv2.circle(mask, (x, y), r, (255, 255, 255), -1) masked_img = cv2.bitwise_xor(img, mask) # 将当前圆从RGB通道转换为灰度通道 gray_img = cv2.cvtColor(masked_img, cv2.COLOR_RGB2GRAY) # 计算当前圆的灰度值 gray_value = np.mean(gray_img) # 将当前圆的灰度值保存到二维数组中 gray_values[i] = gray_value # 打印每个圆的灰度值 print(gray_values) cv2.imshow('chess', img) cv2.imshow('chess1', gray_img) cv2.waitKey(0) cv2.destroyAllWindows()

这是对单个文件进行预测“import os import json import torch from PIL import Image from torchvision import transforms import matplotlib.pyplot as plt from model import convnext_tiny as create_model def main(): device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print(f"using {device} device.") num_classes = 5 img_size = 224 data_transform = transforms.Compose( [transforms.Resize(int(img_size * 1.14)), transforms.CenterCrop(img_size), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) # load image img_path = "../tulip.jpg" assert os.path.exists(img_path), "file: '{}' dose not exist.".format(img_path) img = Image.open(img_path) plt.imshow(img) # [N, C, H, W] img = data_transform(img) # expand batch dimension img = torch.unsqueeze(img, dim=0) # read class_indict json_path = './class_indices.json' assert os.path.exists(json_path), "file: '{}' dose not exist.".format(json_path) with open(json_path, "r") as f: class_indict = json.load(f) # create model model = create_model(num_classes=num_classes).to(device) # load model weights model_weight_path = "./weights/best_model.pth" model.load_state_dict(torch.load(model_weight_path, map_location=device)) model.eval() with torch.no_grad(): # predict class output = torch.squeeze(model(img.to(device))).cpu() predict = torch.softmax(output, dim=0) predict_cla = torch.argmax(predict).numpy() print_res = "class: {} prob: {:.3}".format(class_indict[str(predict_cla)], predict[predict_cla].numpy()) plt.title(print_res) for i in range(len(predict)): print("class: {:10} prob: {:.3}".format(class_indict[str(i)], predict[i].numpy())) plt.show() if __name__ == '__main__': main()”,改为对指定文件夹下的左右文件进行预测,并绘制混淆矩阵

import cv2 import matplotlib.pyplot as plt import numpy as np from skimage.measure import label, regionprops file_url = './data/origin/DJI_0081.jpg' output_url = './DJI_0081_ROI.jpg' def show_img(img, title): cv2.namedWindow(title, cv2.WINDOW_NORMAL) cv2.imshow(title, img) def output_img(img, url): cv2.imwrite(url, img, [int(cv2.IMWRITE_PNG_COMPRESSION), 9]) # 使用2g-r-b分离 src = cv2.imread(file_url) show_img(src, 'src') # 转换为浮点数进行计算 fsrc = np.array(src, dtype=np.float32) / 255.0 (b, g, r) = cv2.split(fsrc) gray = 2 * g - 0.9 * b - 1.1 * r # 求取最大值和最小值 (minVal, maxVal, minLoc, maxLoc) = cv2.minMaxLoc(gray) # 转换为u8类型,进行otsu二值化 gray_u8 = np.array((gray - minVal) / (maxVal - minVal) * 255, dtype=np.uint8) (thresh, bin_img) = cv2.threshold(gray_u8, -1.0, 255, cv2.THRESH_OTSU) show_img(bin_img, 'bin_img') def find_max_connected_component(binary_img): # 输出二值图像中所有的连通域 img_label, num = label(binary_img, connectivity=1, background=0, return_num=True) # connectivity=1--4 connectivity=2--8 # print('+++', num, img_label) # 输出连通域的属性,包括面积等 props = regionprops(img_label) resMatrix = np.zeros(img_label.shape).astype(np.uint8) # 只保留最大的连通域 max_area = 0 max_index = 0 for i in range(0, len(props)): if props[i].area > max_area: max_area = props[i].area max_index = i tmp = (img_label == max_index + 1).astype(np.uint8) resMatrix += tmp resMatrix *= 255 return resMatrix bin_img = find_max_connected_component(bin_img) show_img(bin_img, 'bin_img') # 得到彩色的图像 (b8, g8, r8) = cv2.split(src) color_img = cv2.merge([b8 & bin_img, g8 & bin_img, r8 & bin_img]) output_img(color_img, output_url) show_img(color_img, 'color_img') cv2.waitKey() cv2.destroyAllWindows()

import cv2 import numpy as np # 读取两幅图像 img1 = cv2.imread('D:\wzk\JIEMIAN\images\er_duibidu.jpg') img2 = cv2.imread('D:\wzk\JIEMIAN\images\yi_duibidu.jpg') # 将两幅图像转换为灰度图像 gray1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY) gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY) # 提取图像特征点 orb = cv2.ORB_create() kp1, des1 = orb.detectAndCompute(gray1, None) kp2, des2 = orb.detectAndCompute(gray2, None) # 匹配特征点 matcher = cv2.DescriptorMatcher_create(cv2.DESCRIPTOR_MATCHER_BRUTEFORCE_HAMMING) matches = matcher.match(des1, des2) # 选择最佳匹配点 matches = sorted(matches, key=lambda x: x.distance) good_matches = matches[:int(len(matches)*0.15)] # 绘制特征点连接图 img3 = cv2.drawMatches(img1, kp1, img2, kp2, good_matches, None, flags=cv2.DrawMatchesFlags_NOT_DRAW_SINGLE_POINTS) # 计算变换矩阵 src_pts = np.float32([kp1[m.queryIdx].pt for m in good_matches]).reshape(-1, 1, 2) dst_pts = np.float32([kp2[m.trainIdx].pt for m in good_matches]).reshape(-1, 1, 2) M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0) # 拼接图像 result = cv2.warpPerspective(img1, M, (img1.shape[1] + img2.shape[1], img1.shape[0])) result[0:img2.shape[0], 0:img2.shape[1]] = img2 # 保存连接图 cv2.imwrite('D:\wzk\JIEMIAN\Result\ORB-pz.jpg', img3) # 保存第二幅图像 cv2.imwrite('D:\wzk\JIEMIAN\Result\ORB-pj.jpg', result) # 显示结果 cv2.namedWindow("Keypoint Matches", cv2.WINDOW_NORMAL) cv2.imshow("Keypoint Matches", img3) cv2.namedWindow("Result",cv2.WINDOW_NORMAL) cv2.imshow('Result', result) cv2.waitKey(0) cv2.destroyAllWindows()改进为对文件夹内的多幅图像进行配准拼接

最新推荐

recommend-type

STM32F103单片机连接EC800-4G模块采集GNSS定位数据和多组传感器数据上传到ONENET云平台并接收控制指令.zip

1、嵌入式物联网单片机项目开发例程,简单、方便、好用,节省开发时间。 2、代码使用KEIL 标准库开发,当前在STM32F103运行,如果是STM32F103其他型号芯片,依然适用,请自行更改KEIL芯片型号以及FLASH容量即可。 3、软件下载时,请注意keil选择项是jlink还是stlink。 4、有偿指导v:wulianjishu666; 5、如果接入其他传感器,请查看账号发布的其他资料。 6、单片机与模块的接线,在代码当中均有定义,请自行对照。 7、若硬件有差异,请根据自身情况调整代码,程序仅供参考学习。 8、代码有注释说明,请耐心阅读。
recommend-type

前端分析-2023071100789

前端分析-2023071100789
recommend-type

Elasticsearch核心改进:实现Translog与索引线程分离

资源摘要信息:"Elasticsearch是一个基于Lucene构建的开源搜索引擎。它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口。Elasticsearch是用Java语言开发的,并作为Apache许可条款下的开源项目发布,是当前流行的企业级搜索引擎。设计用于云计算中,能够达到实时搜索,稳定,可靠,快速,安装使用方便。" "Elasticsearch的索引线程是处理索引操作的重要部分,负责处理数据的写入、更新和删除等操作。但是,在处理大量数据和高并发请求时,如果索引线程处理速度过慢,就会导致数据处理的延迟,影响整体性能。因此,Elasticsearch采用了事务日志(translog)机制来提高索引操作的效率和可靠性。" "Elasticsearch的事务日志(translog)是一种持久化存储机制,用于记录所有未被持久化到分片中的索引操作。在发生故障或系统崩溃时,事务日志可以确保所有索引操作不会丢失,保证数据的完整性。每个分片都有自己的事务日志文件。" "在Elasticsearch的早期版本中,事务日志的操作和索引线程的操作是在同一个线程中完成的,这可能会导致性能瓶颈。为了解决这个问题,Elasticsearch将事务日志的操作从索引线程中分离出去,使得索引线程可以专注于数据的索引操作,而事务日志的操作可以独立地进行。这样可以大大提高了Elasticsearch的索引性能。" "但是,事务日志的操作是独立于索引操作的,这就需要保证事务日志的操作不会影响到索引操作的性能。因此,在将事务日志从索引线程分离出去的同时,Elasticsearch也引入了一些优化策略,比如批量写入事务日志,减少磁盘I/O操作,以及优化事务日志的数据结构,提高读写效率等。" "需要注意的是,虽然事务日志的分离可以提高索引操作的性能,但是也会增加系统的复杂度和维护难度。因此,开发者在使用这个功能时,需要充分理解其原理和影响,才能确保系统的稳定运行。" "此外,由于这个功能还处于测试和学习阶段,尚未被广泛应用于生产环境,所以开发者在使用时需要谨慎,避免对生产环境造成影响。" "总的来说,Elasticsearch的事务日志的分离是一个重要的优化,可以大大提升索引操作的性能,但是在使用时也需要充分考虑其带来的影响,才能确保系统的稳定运行。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

病房呼叫系统设计基础:7个关键架构策略让你一步入门

![病房呼叫系统设计基础:7个关键架构策略让你一步入门](https://zektek.com.mx/wp-content/uploads/2021/03/diagram-enfermeria.jpg) # 摘要 本文对病房呼叫系统进行了深入的概述、需求分析、架构设计、功能实现以及实践应用案例的探讨。通过分析系统架构的重要性、设计原则、模块划分和数据流,确保了系统的高效运行和优化。本文进一步探讨了呼叫信号传输技术、显示与反馈机制、系统安全性与可靠性设计,并分析了系统部署环境、安装调试流程和维护升级策略。最后,文章展望了病房呼叫系统的未来发展趋势,包括智能化、技术融合以及法规遵从与伦理考量,并
recommend-type

Selenium如何获取Shadow DOM下的元素属性?

在Selenium中,获取Shadow DOM下的元素属性通常涉及到两步:首先找到元素,然后访问它的属性。由于Shadow DOM元素默认是不可见的(对于非JavaScript开发者),所以我们需要用JavaScript脚本来获取其内容。 下面是一个示例,展示如何通过Selenium的`execute_script`函数获取Shadow DOM元素的属性: ```python from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import WebDriverWait from sel
recommend-type

分享个人Vim与Git配置文件管理经验

资源摘要信息:"conffiles:我的vim和git配置文件" 在给定的文件信息中,我们可以梳理出一些关键知识点,这些知识点主要涉及到了Vim编辑器和Git版本控制系统,同时涉及到了Linux环境下的一些文件操作知识。 首先,文件标题提到了"conffiles",这通常是指配置文件(configuration files)的缩写。配置文件是软件运行时用于读取用户设置或其他运行参数的文件,它们允许软件按照用户的特定需求进行工作。在本例中,这些配置文件是与Vim编辑器和Git版本控制系统相关的。 Vim是一种流行的文本编辑器,是UNIX系统中vi编辑器的增强版本。Vim不仅支持代码编辑,还支持插件扩展、多种模式(命令模式、插入模式、视觉模式等)和高度可定制化。在这个上下文中,"我的vim"可能指的是使用者为Vim定制的一套配置文件,这些配置文件可能包含键位映射、颜色主题、插件设置、用户界面布局和其他个性化选项。 Git是一个版本控制系统,用于跟踪计算机文件的更改和协作。Git是分布式版本控制,这意味着每个开发者都有一个包含完整项目历史的仓库副本。Git常用于代码的版本控制管理,它允许用户回滚到之前的版本、合并来自不同贡献者的代码,并且有效地管理代码变更。在这个资源中,"git conffiles"可能表示与Git用户相关的配置文件,这可能包括用户凭证、代理设置、别名以及其他一些全局Git配置选项。 描述部分提到了使用者之前使用的编辑器是Vim,但现在转向了Emacs。尽管如此,该用户仍然保留了以前的Vim配置文件。接着,描述中提到了一个安装脚本命令"sh ./.vim/install.sh"。这是一个shell脚本,通常用于自动化安装或配置过程。在这里,这个脚本可能用于创建符号链接(symbolic links),将旧的Vim配置文件链接到当前使用的Emacs配置文件夹中,使用户能够继续使用他们熟悉且习惯的Vim配置。 标签"Vimscript"表明这是一个与Vim脚本相关的资源,Vim脚本是一种专门用于自定义和扩展Vim功能的编程语言。Vimscript可以用于编写宏、自定义函数、插件等。 最后,文件名称列表"conffiles-master"可能表明这个压缩包文件包含了一系列的主配置文件。在Git版本控制的术语中,"master"(现在通常称为"main")分支是项目仓库的默认分支。这暗示了这些配置文件可能是该用户项目的主配置文件,这些配置文件被包含在名为"conffiles-master"的压缩包中。 综上所述,这个资源可能是一个集合了Vim编辑器和Git版本控制系统的个人配置文件的压缩包,附带一个用于符号链接旧Vim配置的安装脚本,它能够帮助用户在转向其他工具时仍然能够使用之前的个性化设置。这个资源对于想要了解如何管理和迁移配置文件的用户具有一定的参考价值。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【Genesis 2000教程】:7个技巧助你精通界面布局与操作

![技术专有名词:Genesis 2000](http://intewellos.com/uploadfiles/2023/03/20230321111815165.png) # 摘要 本文全面介绍了Genesis 2000软件的界面布局基础、操作技巧、视觉效果调整、高级功能应用以及综合案例分析,旨在帮助用户高效利用该软件提升工作效率和设计质量。文章首先从界面元素和布局优化入手,讲述了如何定制面板、工具栏以及管理窗口与视图。接着,探讨了通过快捷键和搜索功能实现的高效导航与搜索技巧。第三章强调了视觉效果与图形、文本处理的重要性,并提供实现高级视觉效果的技巧。第四章详细介绍了插件集成、参数化设计
recommend-type

求出所有100到200以内的偶数,并放在数组中,按照每行5个输出

为了求出100到200之间所有的偶数并将它们放入数组中,然后每行打印5个,你可以按以下步骤操作: 1. 创建一个空数组,用于存储偶数。 2. 使用一个for循环,从100开始,每次增加2,直到达到200(包括200)。 - 对于每个数字,检查它是否是偶数(除以2余数为0)。 - 如果是偶数,则添加到数组中。 3. 当找到一个偶数后,检查数组的长度。如果到达或超过5个元素,就开始一个新的行并清空数组,只保留最后一个偶数。 4. 循环结束后,无论数组是否满5个元素,都需要打印剩余的偶数。 这是一个伪代码示例: ```python array = [] num = 100 whil