错误使用 optim.problemdef.OptimizationExpression/horzcat 无法从 optim.problemdef.OptimizationEquality 转换为 OptimizationExpression。
时间: 2024-09-07 07:03:44 浏览: 47
关于torch.optim的灵活使用详解(包括重写SGD,加上L1正则)
在使用OptimizationProblemDef这个库中的`optim.problemdef.OptimizationExpression`和`horzcat`函数时,需要注意的是,这两个功能主要用于组合优化表达式的各个组成部分,而不是用于转换数据类型的。特别是当你试图将`optim.problemdef.OptimizationEquality`对象直接合并到`OptimizationExpression`时,因为它们代表了不同类型的操作,即线性等式和一般表达式,这种操作通常是不允许的。
`OptimizationEquality`表示线性等式约束,它包含左侧面和右侧面,而`OptimizationExpression`则更广泛,包含了变量、常数项和算术运算。如果你想把线性等式添加到优化表达式中,应该先将其拆分成单独的变量和系数,然后以合适的方式添加到表达式的相应部分。
例如:
```python
# 假设你有一个LinearConstraint equalityObj
equalityObj = LinearConstraint([var1, var2], sense="<=", rhs)
# 首先提取出变量和系数
coefficients, variables = equalityObj.linear_coefficients
# 然后将它们分别添加到expression中
expression += sum(coefficients * expressionTerm for expressionTerm in variables)
```
这里`+`操作符用于添加新的线性项到`OptimizationExpression`。
如果遇到这种转换失败的情况,你应该检查你的代码是否正确拆分了等式,并确保理解这两种对象之间的区别。
阅读全文