torch.cat dim=-1
时间: 2024-03-19 22:38:23 浏览: 218
torch.cat(dim=-1)是PyTorch中的一个函数,用于将多个张量沿着指定维度进行拼接。在这里,dim=-1表示在最后一个维度上进行拼接。
具体来说,torch.cat(dim=-1)会将多个张量按照它们的最后一个维度进行拼接,生成一个新的张量。这意味着拼接后的张量在最后一个维度上的大小会增加,而其他维度的大小保持不变。
下面是一个示例:
```
import torch
# 创建两个张量
tensor1 = torch.tensor([[1, 2, 3], [4, 5, 6]])
tensor2 = torch.tensor([[7, 8, 9], [10, 11, 12]])
# 在最后一个维度上拼接
result = torch.cat((tensor1, tensor2), dim=-1)
print(result)
```
输出结果为:
```
tensor([[ 1, 2, 3, 7, 8, 9],
[ 4, 5, 6, 10, 11, 12]])
```
相关问题
torch.cat dim=1
torch.cat(dim=1)是指在维度1上对张量进行拼接操作。具体来说,它会将两个张量按行并排起来。这意味着原始张量的列数会增加,行数不变。例如,如果有两个形状分别为(3, 4)和(3, 4)的张量x和y,那么torch.cat((x, y), dim=1)会生成一个形状为(3, 8)的新张量,其中前4列是来自x,后4列是来自y。
torch.cat(dim=-1)
torch.cat(dim=-1) is a PyTorch function that concatenates tensors along a given dimension. The "-1" dimension refers to the last dimension of the tensors being concatenated.
For example, if we have two tensors of shape (3, 4) and (3, 5), and we want to concatenate them along the last dimension, we can use the function as follows:
```
import torch
tensor1 = torch.randn(3, 4)
tensor2 = torch.randn(3, 5)
concatenated_tensor = torch.cat([tensor1, tensor2], dim=-1)
print(concatenated_tensor.shape)
```
Output:
```
torch.Size([3, 9])
```
The resulting tensor has a shape of (3, 9), where the last dimension has a size of 4+5=9.
阅读全文