np。linalg.lstsq

时间: 2024-06-18 18:03:51 浏览: 219
ZIP

最小二乘法的 Python 程序.zip

np.linalg.lstsq是numpy中的一个函数,用于求解线性最小二乘问题,即给定一个线性方程组Ax = b,求解x的值。其中A为m x n的矩阵,b为m维的向量。该函数返回一个元组,包含了以下四个元素: 1. x:求解得到的x值; 2. residuals:残差平方和; 3. rank:矩阵A的秩; 4. s:矩阵A的奇异值。 可以使用以下代码调用该函数: ``` import numpy as np A = np.array([[1, 2], [3, 4], [5, 6]]) b = np.array([1, 2, 3]) x, residuals, rank, s = np.linalg.lstsq(A, b, rcond=None) ``` 其中rcond参数用于设置奇异值的阈值,通常使用默认值即可。如果A矩阵不是满秩的,则无法求解出唯一的x值,此时可以使用numpy中的伪逆函数np.linalg.pinv来进行求解。
阅读全文

相关推荐

将以下代码改为C++代码: import scipy.special as sp import numpy as np import numba from numba import njit,prange import math import trimesh as tri fileName="data/blub.obj" outName='./output/blub_rec.obj' # 参数 # 限制选取球谐基函数的带宽 bw=64 # 极坐标,经度0<=theta<2*pi,纬度0<=phi<pi; # (x,y,z)=r(sin(phi)cos(theta),sin(phi)sin(theta),cos(phi)) def get_angles(x,y,z): r=np.sqrt(x*x+y*y+z*z) x/=r y/=r z/=r phi=np.arccos(z) if phi==0: theta=0 theta=np.arccos(x/np.sin(phi)) if y/np.sin(phi)<0: theta+=math.pi return [theta,phi] if __name__=='__main__': # 载入网格 mesh=tri.load(fileName) # 获得网格顶点(x,y,z)对应的(theta,phi) numV=len(mesh.vertices) angles=np.zeros([numV,2]) for i in range(len(mesh.vertices)): v=mesh.vertices[i] [angles[i,0],angles[i,1]]=get_angles(v[0],v[1],v[2]) # 求解方程:x(theta,phi)=对m,l求和 a^m_lY^m_l(theta,phi) 解出系数a^m_l # 得到每个theta,phi对应的x X,Y,Z=np.zeros([numV,1]),np.zeros([numV,1]),np.zeros([numV,1]) for i in range(len(mesh.vertices)): X[i],Y[i],Z[i]=mesh.vertices[i,0],mesh.vertices[i,1],mesh.vertices[i,2] # 求出Y^m_l(theta,phi)作为矩阵系数 sph_harm_values=np.zeros([numV,(bw+1)*(bw+1)]) for i in range(numV): for l in range(bw): for m in range(-l,l+1): sph_harm_values[i,l*(l+1)+m]=sp.sph_harm(m,l,angles[i,0],angles[i,1]) print('系数矩阵维数:{}'.format(sph_harm_values.shape)) # 求解方程组,得到球谐分解系数 a_x=np.linalg.lstsq(sph_harm_values,X,rcond=None)[0] a_y=np.linalg.lstsq(sph_harm_values,Y,rcond=None)[0] a_z=np.linalg.lstsq(sph_harm_values,Z,rcond=None)[0] # 从系数恢复的x,y,z坐标,存为新的点云用于比较 x=np.matmul(sph_harm_values,a_x) y=np.matmul(sph_harm_values,a_y) z=np.matmul(sph_harm_values,a_z) with open(outName,'w') as output: for i in range(len(x)): output.write("v %f %f %f\n"%(x[i,0],y[i,0],z[i,0]))

#预测因子(海温) #nino3.4赤道东太平洋(190-220,-5-5) a22=sst_djf.sel(lon=slice(190,220),lat=slice(5,-5)).mean(axis=1).mean(axis=1) a2=(a22-a22.mean())/a22.std() #赤道印度洋(50-80,-5-5) a33=sst_djf.sel(lon=slice(50,100),lat=slice(5,-5)).mean(axis=1).mean(axis=1) a3=(a33-a33.mean())/a33.std() #预测因子(环流场) #南欧(30-40,35-45) b11=hgt_djf.sel(lon=slice(30,40),lat=slice(45,35)).mean(axis=1).mean(axis=1) b1=(b11-b11.mean())/b11.std() #太平洋副高(120-180,-10-10) b22=hgt_djf.sel(lon=slice(120,180),lat=slice(10,-10)).mean(axis=1).mean(axis=1) b2=(b22-b22.mean())/b22.std() #印度洋(60-80,-10-10) b33=hgt_djf.sel(lon=slice(60,80),lat=slice(10,-10)).mean(axis=1).mean(axis=1) b3=(b33-b33.mean())/b33.std() x=np.vstack([(a2,a3,b1,b2,b3)]).T x2=np.vstack([(a2,b1)]).T y=pre_standard #多元线性回归 res=np.linalg.lstsq(x,y,rcond=None) n=res[0] ##各项系数 y_fit=(n.T*x).sum(axis=1) #拟合数据 res2=np.linalg.lstsq(x2,y,rcond=None) n2=res2[0] ##各项系数 y_fit2=(n2.T*x2).sum(axis=1) #拟合数据 #可视化 time=np.arange(1961,2017,1) fig = plt.figure(figsize=[16, 5]) ax = fig.add_subplot() ax.plot(time, y,marker='o', color='gray', markersize=5) ax.plot(time, y_fit,marker='*', color='b', markersize=5) ax.plot(time, y_fit2,marker='^', color='r', markersize=5) ax.set_title('model',fontsize=20,fontweight='bold') ax.set_xlabel('Time') ax.set_ylabel('Pre') plt.legend(['Source data','Fitted1','Fitted2'],frameon=False,loc='best') plt.show()选做剔除一年的交叉检验,独立试报

最新推荐

recommend-type

Python系列–最全numpy的线性代数函数功能及用法

`np.linalg.lstsq(x, b)` 求解最小二乘问题,即找到最佳的`a`使得`a*x`接近于`b`。它用于回归分析和其他统计建模任务,特别是当系统存在噪声或过完备时。 掌握这些NumPy的线性代数函数,可以帮助你在数据分析、...
recommend-type

Python常用库Numpy进行矩阵运算详解

对于线性代数中的更复杂操作,如解线性方程组,可以使用`np.linalg.solve()`或`np.linalg.lstsq()`。 在处理随机数时,Numpy的`np.random`模块非常有用。`np.random.rand()`生成0到1之间的均匀分布随机数,`np....
recommend-type

精细金属掩模板(FMM)行业研究报告 显示技术核心部件FMM材料产业分析与市场应用

精细金属掩模板(FMM)作为OLED蒸镀工艺中的核心消耗部件,负责沉积RGB有机物质形成像素。材料由Frame、Cover等五部分组成,需满足特定热膨胀性能。制作工艺包括蚀刻、电铸等,影响FMM性能。适用于显示技术研究人员、产业分析师,旨在提供FMM材料技术发展、市场规模及产业链结构的深入解析。
recommend-type

【创新未发表】斑马算法ZOA-Kmean-Transformer-LSTM负荷预测Matlab源码 9515期.zip

CSDN海神之光上传的全部代码均可运行,亲测可用,直接替换数据即可,适合小白; 1、代码压缩包内容 主函数:Main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2024b;若运行有误,根据提示修改;若不会,可私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开除Main.m的其他m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博主博客文章底部QQ名片; 4.1 CSDN博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作 智能优化算法优化Kmean-Transformer-LSTM负荷预测系列程序定制或科研合作方向: 4.4.1 遗传算法GA/蚁群算法ACO优化Kmean-Transformer-LSTM负荷预测 4.4.2 粒子群算法PSO/蛙跳算法SFLA优化Kmean-Transformer-LSTM负荷预测 4.4.3 灰狼算法GWO/狼群算法WPA优化Kmean-Transformer-LSTM负荷预测 4.4.4 鲸鱼算法WOA/麻雀算法SSA优化Kmean-Transformer-LSTM负荷预测 4.4.5 萤火虫算法FA/差分算法DE优化Kmean-Transformer-LSTM负荷预测 4.4.6 其他优化算法优化Kmean-Transformer-LSTM负荷预测
recommend-type

Angular实现MarcHayek简历展示应用教程

资源摘要信息:"MarcHayek-CV:我的简历的Angular应用" Angular 应用是一个基于Angular框架开发的前端应用程序。Angular是一个由谷歌(Google)维护和开发的开源前端框架,它使用TypeScript作为主要编程语言,并且是单页面应用程序(SPA)的优秀解决方案。该应用不仅展示了Marc Hayek的个人简历,而且还介绍了如何在本地环境中设置和配置该Angular项目。 知识点详细说明: 1. Angular 应用程序设置: - Angular 应用程序通常依赖于Node.js运行环境,因此首先需要全局安装Node.js包管理器npm。 - 在本案例中,通过npm安装了两个开发工具:bower和gulp。bower是一个前端包管理器,用于管理项目依赖,而gulp则是一个自动化构建工具,用于处理如压缩、编译、单元测试等任务。 2. 本地环境安装步骤: - 安装命令`npm install -g bower`和`npm install --global gulp`用来全局安装这两个工具。 - 使用git命令克隆远程仓库到本地服务器。支持使用SSH方式(`***:marc-hayek/MarcHayek-CV.git`)和HTTPS方式(需要替换为具体用户名,如`git clone ***`)。 3. 配置流程: - 在server文件夹中的config.json文件里,需要添加用户的电子邮件和密码,以便该应用能够通过内置的联系功能发送信息给Marc Hayek。 - 如果想要在本地服务器上运行该应用程序,则需要根据不同的环境配置(开发环境或生产环境)修改config.json文件中的“baseURL”选项。具体而言,开发环境下通常设置为“../build”,生产环境下设置为“../bin”。 4. 使用的技术栈: - JavaScript:虽然没有直接提到,但是由于Angular框架主要是用JavaScript来编写的,因此这是必须理解的核心技术之一。 - TypeScript:Angular使用TypeScript作为开发语言,它是JavaScript的一个超集,添加了静态类型检查等功能。 - Node.js和npm:用于运行JavaScript代码以及管理JavaScript项目的依赖。 - Git:版本控制系统,用于代码的版本管理及协作开发。 5. 关于项目结构: - 该应用的项目文件夹结构可能遵循Angular CLI的典型结构,包含了如下目录:app(存放应用组件)、assets(存放静态资源如图片、样式表等)、environments(存放环境配置文件)、server(存放服务器配置文件如上文的config.json)等。 6. 开发和构建流程: - 开发时,可能会使用Angular CLI来快速生成组件、服务等,并利用热重载等特性进行实时开发。 - 构建应用时,通过gulp等构建工具可以进行代码压缩、ES6转译、单元测试等自动化任务,以确保代码的质量和性能优化。 7. 部署: - 项目最终需要部署到服务器上,配置文件中的“baseURL”选项指明了服务器上的资源基础路径。 8. 关于Git仓库: - 压缩包子文件的名称为MarcHayek-CV-master,表明这是一个使用Git版本控制的仓库,且存在一个名为master的分支,这通常是项目的主分支。 以上知识点围绕Angular应用“MarcHayek-CV:我的简历”的创建、配置、开发、构建及部署流程进行了详细说明,涉及了前端开发中常见的工具、技术及工作流。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

深入剖析:内存溢出背后的原因、预防及应急策略(专家版)

![深入剖析:内存溢出背后的原因、预防及应急策略(专家版)](https://d8it4huxumps7.cloudfront.net/uploads/images/65e82a01a4196_dangling_pointer_in_c_2.jpg?d=2000x2000) 参考资源链接:[Net 内存溢出(System.OutOfMemoryException)的常见情况和处理方式总结](https://wenku.csdn.net/doc/6412b784be7fbd1778d4a95f?spm=1055.2635.3001.10343) # 1. 内存溢出的概念及影响 内存溢出,又称
recommend-type

Java中如何对年月日时分秒的日期字符串作如下处理:如何日期分钟介于两个相连的半点之间,就将分钟数调整为前半点

在Java中,你可以使用`java.time`包中的类来处理日期和时间,包括格式化和调整。下面是一个示例,展示了如何根据给定的日期字符串(假设格式为"yyyy-MM-dd HH:mm:ss")进行这样的处理: ```java import java.text.SimpleDateFormat; import java.time.LocalDateTime; import java.time.ZoneId; import java.time.ZonedDateTime; public class Main { public static void main(String[] args
recommend-type

Crossbow Spot最新更新 - 获取Chrome扩展新闻

资源摘要信息:"Crossbow Spot - Latest News Update-crx插件" 该信息是关于一款特定的Google Chrome浏览器扩展程序,名为"Crossbow Spot - Latest News Update"。此插件的目的是帮助用户第一时间获取最新的Crossbow Spot相关信息,它作为一个RSS阅读器,自动聚合并展示Crossbow Spot的最新新闻内容。 从描述中可以提取以下关键知识点: 1. 功能概述: - 扩展程序能让用户领先一步了解Crossbow Spot的最新消息,提供实时更新。 - 它支持自动更新功能,用户不必手动点击即可刷新获取最新资讯。 - 用户界面设计灵活,具有美观的新闻小部件,使得信息的展现既实用又吸引人。 2. 用户体验: - 桌面通知功能,通过Chrome的新通知中心托盘进行实时推送,确保用户不会错过任何重要新闻。 - 提供一个便捷的方式来保持与Crossbow Spot最新动态的同步。 3. 语言支持: - 该插件目前仅支持英语,但开发者已经计划在未来的版本中添加对其他语言的支持。 4. 技术实现: - 此扩展程序是基于RSS Feed实现的,即从Crossbow Spot的RSS源中提取最新新闻。 - 扩展程序利用了Chrome的通知API,以及RSS Feed处理机制来实现新闻的即时推送和展示。 5. 版权与免责声明: - 所有的新闻内容都是通过RSS Feed聚合而来,扩展程序本身不提供原创内容。 - 用户在使用插件时应遵守相关的版权和隐私政策。 6. 安装与使用: - 用户需要从Chrome网上应用店下载.crx格式的插件文件,即Crossbow_Spot_-_Latest_News_Update.crx。 - 安装后,插件会自动运行,并且用户可以对其进行配置以满足个人偏好。 从以上信息可以看出,该扩展程序为那些对Crossbow Spot感兴趣或需要密切跟进其更新的用户提供了一个便捷的解决方案,通过集成RSS源和Chrome通知机制,使得信息获取变得更加高效和及时。这对于需要实时更新信息的用户而言,具有一定的实用价值。同时,插件的未来发展计划中包括了多语言支持,这将使得更多的用户能够使用并从中受益。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依