np。linalg.lstsq
时间: 2024-06-18 09:03:51 浏览: 234
np.linalg.lstsq是numpy中的一个函数,用于求解线性最小二乘问题,即给定一个线性方程组Ax = b,求解x的值。其中A为m x n的矩阵,b为m维的向量。该函数返回一个元组,包含了以下四个元素:
1. x:求解得到的x值;
2. residuals:残差平方和;
3. rank:矩阵A的秩;
4. s:矩阵A的奇异值。
可以使用以下代码调用该函数:
```
import numpy as np
A = np.array([[1, 2], [3, 4], [5, 6]])
b = np.array([1, 2, 3])
x, residuals, rank, s = np.linalg.lstsq(A, b, rcond=None)
```
其中rcond参数用于设置奇异值的阈值,通常使用默认值即可。如果A矩阵不是满秩的,则无法求解出唯一的x值,此时可以使用numpy中的伪逆函数np.linalg.pinv来进行求解。
相关问题
np.linalg.lstsq
`np.linalg.lstsq` is a NumPy function that solves the least-squares problem, which is finding the best-fitting linear equation for a set of data points. It takes as input a matrix `A` representing the data points, a vector `b` representing the target values, and an optional parameter `rcond` that specifies the cutoff for small singular values. The function returns a tuple `(x, residuals, rank, s)` where `x` is the solution to the least-squares problem, `residuals` is the sum of squared residuals, `rank` is the rank of matrix `A`, and `s` is an array containing the singular values of `A`.
The solution `x` represents the coefficients of the linear equation that best fits the data. If `A` has more columns than rows, the solution is an over-determined system and the best-fitting solution is obtained by minimizing the sum of squared residuals. If `A` has more rows than columns, the solution is an under-determined system and the least-norm solution is obtained by minimizing the norm of `x`.
np.linalg.lstsq函数
np.linalg.lstsq函数是numpy库中的一个函数,用于求解线性最小二乘问题。它的参数包括系数矩阵a、目标值矩阵b和rcond参数。该函数返回一个包含最小二乘解、残差平方和、系数矩阵a的秩以及a的奇异值的元组。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *2* [numpy.linalg.lstsq()详解以及用法示例](https://blog.csdn.net/weixin_43544164/article/details/122350501)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"]
- *3* [np.linalg.lstsq()进行线性回归拟合](https://blog.csdn.net/qq_41092406/article/details/120062910)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
阅读全文