pinn网络 burgers方程
时间: 2023-09-05 08:02:48 浏览: 350
PINN的Burgers Inference (PyTorch)-Raissi-jupyter
pinn网络是基于神经网络的一种方法,用于求解偏微分方程。而Burgers方程是描述流体中非线性波动的一个经典方程。
Burgers方程可以表示为ut + u * ux = ν * uxx,其中u是速度场,t是时间,x是空间变量,ν是动力黏度。此方程描述了存在粘性力和非线性项的流体中的流动行为。
pinn网络的核心思想是利用神经网络来近似和求解Burgers方程。网络的输入层包括时间t和空间x信息,而输出层则是对应的速度场u。在网络的隐藏层中,通过多层感知器(MLP)将输入信息转化为合适的特征表示。
为了训练pinn网络,我们需要收集一些已知的初始条件和边界条件,并将这些条件输入到网络中。然后,通过最小化网络输出与真实解的差异,来调整网络中的参数。这样,网络逐渐学习到了Burgers方程的数值解。
在使用pinn网络求解Burgers方程时,我们可以通过对网络进行多次迭代来提高其准确性和稳定性。每一次迭代都会更新网络权重,并利用新的权重来预测速度场。
总的来说,pinn网络是一种有效求解差分方程的方法,可以应用于求解复杂的流体动力学问题。它的优势在于能够通过端到端的训练来自动从数据中学习出数值解,从而避免了手动求解差分方程的繁琐过程。
阅读全文