模拟退火算法 选址python
时间: 2023-11-28 08:46:31 浏览: 159
模拟退火算法是一种全局优化算法,它可以在解空间中寻找全局最优解。在选址问题中,模拟退火算法可以用来寻找最优的服务站位置。下面是一个使用Python实现模拟退火算法解决选址问题的例子:
```python
import random
import math
import csv
import time
# 读取需求点和服务站数据
def read_data(file_name):
with open(file_name, 'r') as f:
reader = csv.reader(f)
data = list(reader)
return data
# 计算距离
def distance(x1, y1, x2, y2):
return math.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2)
# 计算总费用
def total_cost(customers, facilities, solution):
cost = 0
for i, c in enumerate(customers):
d = float('inf')
for j, f in enumerate(facilities):
if solution[j] == 1:
dist = distance(c[1], c[2], f[1], f[2])
if dist < d:
d = dist
cost += d * c[3]
for i, f in enumerate(facilities):
if solution[i] == 1:
cost += f[3]
return cost
# 模拟退火算法
def simulated_annealing(customers, facilities, initial_solution, initial_temperature, cooling_rate, stopping_temperature):
current_solution = initial_solution
current_cost = total_cost(customers, facilities, current_solution)
best_solution = current_solution
best_cost = current_cost
temperature = initial_temperature
while temperature > stopping_temperature:
i = random.randint(0, len(facilities) - 1)
new_solution = current_solution.copy()
new_solution[i] = 1 - new_solution[i]
new_cost = total_cost(customers, facilities, new_solution)
delta = new_cost - current_cost
if delta < 0 or math.exp(-delta / temperature) > random.random():
current_solution = new_solution
current_cost = new_cost
if current_cost < best_cost:
best_solution = current_solution
best_cost = current_cost
temperature *= cooling_rate
return best_solution, best_cost
# 保存结果到csv文件
def save_result(file_name, facilities, solution, cost, time):
with open(file_name, 'w', newline='') as f:
writer = csv.writer(f)
writer.writerow(['Total cost:', cost, 'Time:', time])
writer.writerow(['Facility status:'] + solution)
writer.writerow(['Facility assignments:'])
for i, f in enumerate(facilities):
if solution[i] == 1:
writer.writerow([i] + f[4:])
# 主函数
def main():
# 读取数据
customers = read_data('customers.csv')[1:]
facilities = read_data('facilities.csv')[1:]
# 初始化解
initial_solution = [random.randint(0, 1) for _ in range(len(facilities))]
# 运行模拟退火算法
start_time = time.time()
solution, cost = simulated_annealing(customers, facilities, initial_solution, 1000, 0.99, 1e-6)
end_time = time.time()
# 保存结果
save_result('result.csv', facilities, solution, cost, end_time - start_time)
if __name__ == '__main__':
main()
```
在这个例子中,我们首先读取了需求点和服务站的数据,然后定义了计算距离和总费用的函数。接着,我们实现了模拟退火算法,并在主函数中调用该算法来解决选址问题。最后,我们将结果保存到csv文件中。
阅读全文