def create_LSTM_model(): # instantiate the model model = Sequential() model.add(Input(shape=(X_train.shape[1], X_train.shape[2]))) model.add(Reshape((X_train.shape[1], 1, X_train.shape[2], 1))) # cnn1d Layers model.add(ConvLSTM2D(filters=64, kernel_size=(1,3), activation='relu', padding='same', return_sequences=True)) model.add(Flatten()) model.add(Dropout(0.5)) model.add(Reshape((X_train.shape[1], 64))) # 添加lstm层 model.add(LSTM(64, activation = 'relu', return_sequences=True)) model.add(Dropout(0.5)) #添加注意力层 model.add(LSTM(64, activation = 'relu', return_sequences=False)) # 添加dropout model.add(Dropout(0.5)) model.add(Dense(128)) # 输出层 model.add(Dense(1, name='Output')) # 编译模型 model.compile(optimizer='adam', loss='mse', metrics=['mae']) return model # lstm network model = create_LSTM_model() # summary print(model.summary())修改代码,解决后续训练时 ValueError: Exception encountered when calling layer 'reshape_13' (type Reshape). total size of new array must be unchanged, input_shape = [10, 1, 1, 5], output_shape = [10, 1, 1, 1] Call arguments received by layer 'reshape_13' (type Reshape): • inputs=tf.Tensor(shape=(None, 10, 1, 1, 5), dtype=float32)问题
时间: 2023-11-12 11:07:38 浏览: 92
这个错误提示是由于在模型中的 `Reshape` 层输入和输出的形状不匹配导致的。具体来说,输出形状为 `[10, 1, 1, 1]`,但是输入形状为 `[10, 1, 1, 5]`,因此需要修改 `Reshape` 层的输出形状。
你可以尝试将第一次 `Reshape` 层的输出形状修改为 `[X_train.shape[1], 1, X_train.shape[2] * 64]`,即将前两个维度保持不变,将第三个维度变成 `X_train.shape[2] * 64`。这样做的目的是将 `ConvLSTM2D` 层的输出展平后,再将最后一个维度与 `LSTM` 层的输入维度相匹配。
修改后的代码如下所示:
```
def create_LSTM_model():
# instantiate the model
model = Sequential()
model.add(Input(shape=(X_train.shape[1], X_train.shape[2])))
model.add(Reshape((X_train.shape[1], 1, X_train.shape[2], 1)))
# cnn1d Layers
model.add(ConvLSTM2D(filters=64, kernel_size=(1,3), activation='relu', padding='same', return_sequences=True))
model.add(Flatten())
model.add(Dropout(0.5))
model.add(Reshape((X_train.shape[1], 1, X_train.shape[2] * 64)))
# 添加lstm层
model.add(LSTM(64, activation = 'relu', return_sequences=True))
model.add(Dropout(0.5))
#添加注意力层
model.add(LSTM(64, activation = 'relu', return_sequences=False))
# 添加dropout
model.add(Dropout(0.5))
model.add(Dense(128))
# 输出层
model.add(Dense(1, name='Output'))
# 编译模型
model.compile(optimizer='adam', loss='mse', metrics=['mae'])
return model
# lstm network
model = create_LSTM_model()
# summary
print(model.summary())
```
你可以尝试运行修改后的代码,看看是否解决了问题。
阅读全文