void CMyView::OnJunzhi35(){ CMyDoc* pDoc = GetDocument(); ASSERT_VALID(pDoc); if (pDoc->m_pDib == NULL) { AfxMessageBox("未打开图像"); return; } int mcols = pDoc->m_pDib->m_nCols; int mrows = pDoc->m_pDib->m_nRows; unsigned char* m_pData = pDoc->m_pDib->pImgData; unsigned char* m_pDataOldPos = m_pData; // 备份原始数据 BYTE* ptmp = new BYTE[mcols * mrows]; memcpy(ptmp, m_pData, mcols * mrows); // 定义模板和掩码大小 int Template[15] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }; int maskCol = 2; int maskRow = 1; // 对每个像素进行处理 for (int j = maskCol; j < mcols - maskCol; j++) { for (int i = maskRow; i < mrows - maskRow; i++) { int sum = 0; for (int m = -maskRow; m <= maskRow; m++) { for (int n = -maskCol; n <= maskCol; n++) { sum += ptmp[(i + m) * mcols + j + n] * Template[(m + maskRow) * (2 * maskCol + 1) + n + maskCol]; } } sum /= 15; if (sum > 255) { sum = 255; } m_pData[i * mcols + j] = sum; } } pDoc->UpdateAllViews(NULL);}有误吗

时间: 2024-01-29 20:02:36 浏览: 22
这段代码有一些潜在的问题。首先,这是一个图像处理的函数,但是没有明确说明采用的是哪种图像处理方法,仅仅提到了一个模板和掩码的大小,这样就无法确定这个函数的具体作用。其次,变量命名不够具有描述性,比如说mcols和mrows分别代表图像的列数和行数,但是没有直接的说明,需要看上下文才能理解。最后,这段代码没有进行内存释放,申请了ptmp数组却没有释放,容易导致内存泄漏问题。
相关问题

void C312105010501View::OnJunzhi(){ C312105010501Doc* pDoc = GetDocument(); ASSERT_VALID(pDoc); if (pDoc->m_pDib == NULL) { AfxMessageBox("未打开图像"); return; } int mcols = pDoc->m_pDib->m_nCols; int mrows = pDoc->m_pDib->m_nRows; unsigned char* m_pData = NULL; m_pData = pDoc->m_pDib->pImgData; unsigned char* m_pDataOldPos = m_pData; BYTE* ptmp = new BYTE[mcols * mrows]; memcpy(ptmp, m_pData, mcols * mrows); int Template[9] = { 1,1,1,1,1,1,1,1,1 }; int mask = 3; int irows, jcols; for (jcols = mask / 2; jcols < mcols - mask / 2; jcols++) { for (irows = mask / 2; irows < mrows - mask / 2; irows++) { int sum = 0, m, n; for (m = -mask / 2; m <= mask / 2; m++) { for (n = -mask / 2; n <= mask / 2; n++) { sum += ptmp[(irows + m) * mcols + jcols + n] * Template[(m + mask / 2) * mask + n + mask / 2]; } } sum = sum / 9; if (sum > 255) sum = 255; m_pData[irows * mcols + jcols] = sum; m_pData = m_pDataOldPos; } m_pData = m_pDataOldPos; } pDoc->UpdateAllViews(NULL);}仿照以上代码写一个3*5均值滤波处理和5*5均值滤波处理和7-7均值滤波处理

以下是分别实现3*5、5*5和7*7均值滤波的代码: 3*5均值滤波: ```c++ void CMyView::OnJunzhi35() { CMyDoc* pDoc = GetDocument(); ASSERT_VALID(pDoc); if (pDoc->m_pDib == NULL) { AfxMessageBox("未打开图像"); return; } int mcols = pDoc->m_pDib->m_nCols; int mrows = pDoc->m_pDib->m_nRows; unsigned char* m_pData = pDoc->m_pDib->pImgData; unsigned char* m_pDataOldPos = m_pData; // 备份原始数据 BYTE* ptmp = new BYTE[mcols * mrows]; memcpy(ptmp, m_pData, mcols * mrows); // 定义模板和掩码大小 int Template[15] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }; int maskCol = 2; int maskRow = 1; // 对每个像素进行处理 for (int j = maskCol; j < mcols - maskCol; j++) { for (int i = maskRow; i < mrows - maskRow; i++) { int sum = 0; for (int m = -maskRow; m <= maskRow; m++) { for (int n = -maskCol; n <= maskCol; n++) { sum += ptmp[(i + m) * mcols + j + n] * Template[(m + maskRow) * (2 * maskCol + 1) + n + maskCol]; } } sum /= 15; if (sum > 255) { sum = 255; } m_pData[i * mcols + j] = sum; } } // 释放内存 delete[] ptmp; pDoc->UpdateAllViews(NULL); } ``` 5*5均值滤波: ```c++ void CMyView::OnJunzhi55() { CMyDoc* pDoc = GetDocument(); ASSERT_VALID(pDoc); if (pDoc->m_pDib == NULL) { AfxMessageBox("未打开图像"); return; } int mcols = pDoc->m_pDib->m_nCols; int mrows = pDoc->m_pDib->m_nRows; unsigned char* m_pData = pDoc->m_pDib->pImgData; unsigned char* m_pDataOldPos = m_pData; // 备份原始数据 BYTE* ptmp = new BYTE[mcols * mrows]; memcpy(ptmp, m_pData, mcols * mrows); // 定义模板和掩码大小 int Template[25] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }; int maskCol = 2; int maskRow = 2; // 对每个像素进行处理 for (int j = maskCol; j < mcols - maskCol; j++) { for (int i = maskRow; i < mrows - maskRow; i++) { int sum = 0; for (int m = -maskRow; m <= maskRow; m++) { for (int n = -maskCol; n <= maskCol; n++) { sum += ptmp[(i + m) * mcols + j + n] * Template[(m + maskRow) * (2 * maskCol + 1) + n + maskCol]; } } sum /= 25; if (sum > 255) { sum = 255; } m_pData[i * mcols + j] = sum; } } // 释放内存 delete[] ptmp; pDoc->UpdateAllViews(NULL); } ``` 7*7均值滤波: ```c++ void CMyView::OnJunzhi77() { CMyDoc* pDoc = GetDocument(); ASSERT_VALID(pDoc); if (pDoc->m_pDib == NULL) { AfxMessageBox("未打开图像"); return; } int mcols = pDoc->m_pDib->m_nCols; int mrows = pDoc->m_pDib->m_nRows; unsigned char* m_pData = pDoc->m_pDib->pImgData; unsigned char* m_pDataOldPos = m_pData; // 备份原始数据 BYTE* ptmp = new BYTE[mcols * mrows]; memcpy(ptmp, m_pData, mcols * mrows); // 定义模板和掩码大小 int Template[49] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }; int maskCol = 3; int maskRow = 3; // 对每个像素进行处理 for (int j = maskCol; j < mcols - maskCol; j++) { for (int i = maskRow; i < mrows - maskRow; i++) { int sum = 0; for (int m = -maskRow; m <= maskRow; m++) { for (int n = -maskCol; n <= maskCol; n++) { sum += ptmp[(i + m) * mcols + j + n] * Template[(m + maskRow) * (2 * maskCol + 1) + n + maskCol]; } } sum /= 49; if (sum > 255) { sum = 255; } m_pData[i * mcols + j] = sum; } } // 释放内存 delete[] ptmp; pDoc->UpdateAllViews(NULL); } ```

void CMyView::OnJunzhi77(){ CMyDoc* pDoc = GetDocument(); ASSERT_VALID(pDoc); if (pDoc->m_pDib == NULL) { AfxMessageBox("未打开图像"); return; } int mcols = pDoc->m_pDib->m_nCols; int mrows = pDoc->m_pDib->m_nRows; unsigned char* m_pData = pDoc->m_pDib->pImgData; unsigned char* m_pDataOldPos = m_pData; // 备份原始数据 BYTE* ptmp = new BYTE[mcols * mrows]; memcpy(ptmp, m_pData, mcols * mrows); // 定义模板和掩码大小 int Template[49] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }; int maskCol = 3; int maskRow = 3; // 对每个像素进行处理 for (int j = maskCol; j < mcols - maskCol; j++) { for (int i = maskRow; i < mrows - maskRow; i++) { int sum = 0; for (int m = -maskRow; m <= maskRow; m++) { for (int n = -maskCol; n <= maskCol; n++) { sum += ptmp[(i + m) * mcols + j + n] * Template[(m + maskRow) * (2 * maskCol + 1) + n + maskCol]; } } sum /= 49; if (sum > 255) { sum = 255; } m_pData[i * mcols + j] = sum; } } pDoc->UpdateAllViews(NULL);}有误吗

这段代码有一些问题: 1. 在处理图像之前,应该进行颜色模式的判断,确保图像是灰度图像,否则可能会出现错误。 2. 该算法实现的是均值滤波,但是对于边缘部分的像素,由于没有对模板进行处理,会造成边缘模糊的问题。 3. 在计算平均值时,应该使用浮点数类型进行计算,否则可能会出现精度问题。 4. 该算法中使用了大量的循环嵌套,对于大尺寸的图像,可能会导致性能问题。 因此,这段代码需要进行一些改进和优化。

相关推荐

VC mfc单文档中代码如下void CMyView::OnDraw(CDC* pDC) { CMyDoc* pDoc = GetDocument(); ASSERT_VALID(pDoc); for (int i=0;iSelectObject(&br); pDC->Ellipse(points[i].x-r,points[i].y-r,points[i].x+r,points[i].y+r); br.DeleteObject(); } // TODO: add draw code for native data here } ///////////////////////////////////////////////////////////////////////////// // CMyView printing BOOL CMyView::OnPreparePrinting(CPrintInfo* pInfo) { // default preparation return DoPreparePrinting(pInfo); } void CMyView::OnBeginPrinting(CDC* /*pDC*/, CPrintInfo* /*pInfo*/) { // TODO: add extra initialization before printing } void CMyView::OnEndPrinting(CDC* /*pDC*/, CPrintInfo* /*pInfo*/) { // TODO: add cleanup after printing } ///////////////////////////////////////////////////////////////////////////// // CMyView diagnostics #ifdef _DEBUG void CMyView::AssertValid() const { CView::AssertValid(); } void CMyView::Dump(CDumpContext& dc) const { CView::Dump(dc); } CMyDoc* CMyView::GetDocument() // non-debug version is inline { ASSERT(m_pDocument->IsKindOf(RUNTIME_CLASS(CMyDoc))); return (CMyDoc*)m_pDocument; } #endif //_DEBUG ///////////////////////////////////////////////////////////////////////////// // CMyView message handlers void CMyView::OnLButtonDown(UINT nFlags, CPoint point) { // TODO: Add your message handler code here and/or call default center=point; r=rand()%46+5;//r=5~50 color=RGB(rand()%256,rand()%256,rand()%256); points.push_back(center); SetTimer(1,200,NULL); CView::OnLButtonDown(nFlags, point); } void CMyView::OnLButtonUp(UINT nFlags, CPoint point) { // TODO: Add your message handler code here and/or call default CView::OnLButtonUp(nFlags, point); } void CMyView::rise() { for(int i=0;i<points.size();i++) { points[i].y-=5; if(points[i].y<-r) { points.erase(points.begin()+i); i--; } } } void CMyView::OnTimer(UINT nIDEvent) { // TODO: Add your message handler code here and/or call default if(nIDEvent==1){ RedrawWindow(); rise(); } CView::OnTimer(nIDEvent); },运行效果中圆在上升过程中颜色和大小不停的变换,应怎么修改此代码使得圆在上升过程中的大小和颜色不会变换,完整步骤及代码

VC mfc单文档中代码如下void CMyView::OnDraw(CDC* pDC) { CMyDoc* pDoc = GetDocument(); ASSERT_VALID(pDoc); for (int i=0;iSelectObject(&br); pDC->Ellipse(points[i].x-r,points[i].y-r,points[i].x+r,points[i].y+r); br.DeleteObject(); } // TODO: add draw code for native data here } ///////////////////////////////////////////////////////////////////////////// // CMyView printing BOOL CMyView::OnPreparePrinting(CPrintInfo* pInfo) { // default preparation return DoPreparePrinting(pInfo); } void CMyView::OnBeginPrinting(CDC* /pDC/, CPrintInfo* /pInfo/) { // TODO: add extra initialization before printing } void CMyView::OnEndPrinting(CDC* /pDC/, CPrintInfo* /pInfo/) { // TODO: add cleanup after printing } ///////////////////////////////////////////////////////////////////////////// // CMyView diagnostics #ifdef _DEBUG void CMyView::AssertValid() const { CView::AssertValid(); } void CMyView::Dump(CDumpContext& dc) const { CView::Dump(dc); } CMyDoc* CMyView::GetDocument() // non-debug version is inline { ASSERT(m_pDocument->IsKindOf(RUNTIME_CLASS(CMyDoc))); return (CMyDoc*)m_pDocument; } #endif //_DEBUG ///////////////////////////////////////////////////////////////////////////// // CMyView message handlers void CMyView::OnLButtonDown(UINT nFlags, CPoint point) { // TODO: Add your message handler code here and/or call default center=point; r=rand()F+5;//r=5~50 color=RGB(rand()%6,rand()%6,rand()%6); points.push_back(center); SetTimer(1,200,NULL); CView::OnLButtonDown(nFlags, point); } void CMyView::OnLButtonUp(UINT nFlags, CPoint point) { // TODO: Add your message handler code here and/or call default CView::OnLButtonUp(nFlags, point); } void CMyView::rise() { for(int i=0;i<points.size();i++) { points[i].y-=5; if(points[i].y<-r) { points.erase(points.begin()+i); i--; } } } void CMyView::OnTimer(UINT nIDEvent) { // TODO: Add your message handler code here and/or call default if(nIDEvent==1){ RedrawWindow(); rise(); } CView::OnTimer(nIDEvent); },怎么修改此代码能实现每次单击鼠标出现的圆大小和颜色随机,但在圆的上升过程中大小和颜色都为刚开始单击鼠标时的大小和颜色,不会不停的变换。并且前面单击鼠标出现的圆的颜色和大小不会随着后面单击鼠标出现的圆的颜色和大小改变而改变。给出完整步骤及代码

最新推荐

recommend-type

计算机图形学实验之画树叶代码

CMyDoc* pDoc = GetDocument(); ASSERT_VALID(pDoc); // TODO: add draw code for native data here int cordX=300, cordY=400, factor=40;COLORREF color; int n; //n:循环次数 double a[4]={0,0.85,0.2,-...
recommend-type

智能制造的数字化工厂规划qytp.pptx

智能制造的数字化工厂规划qytp.pptx
recommend-type

罗兰贝格:德隆人力资源管理体系gltp.pptx

罗兰贝格:德隆人力资源管理体系gltp.pptx
recommend-type

JAVA3D的网络三维技术的设计与实现.zip

JAVA3D的网络三维技术的设计与实现
recommend-type

setuptools-11.3.1.tar.gz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。