plt.scatter (x, y,c=g)

时间: 2024-09-24 18:02:03 浏览: 52
`plt.scatter(x, y, c=g)` 是Python的matplotlib库中用于绘制散点图的一个函数调用。在这个语法中: - `x` 和 `y` 分别代表数据集中每个点的横坐标和纵坐标的值,它们通常是两个列表或数组,对应着你要在二维平面上表示的数据系列。 - `c` 参数是一个可选的颜色编码,用于给散点指定颜色。在这里,`g` 可能是一个颜色名称、RGB值、灰度值、或者可以将数据映射到颜色的序列。如果你想要根据另一个变量 `g` 的值来给散点上色,就需要提供这个变量,它通常也是一个数组。 举个例子,如果你有一个数据集 `(x, y)` 和一个表示大小的变量 `g`,你可以这样创建一个散点图,其中点的位置由 `(x, y)` 决定,点的颜色则根据 `g` 的值变化: ```python import matplotlib.pyplot as plt import numpy as np x = np.random.rand(50) y = np.random.rand(50) g = np.random.randint(0, 5, 50) plt.scatter(x, y, c=g, cmap='viridis') # 使用 'viridis' 调色板 plt.colorbar() # 显示颜色标尺 plt.show() ```
相关问题

import numpy as np import pandas as pd import matplotlib.pyplot as plt from keras.models import Sequential # 导入keras from keras.layers import Dense plt.rcParams['font.sans-serif'] = 'SimHei' df = pd.read_csv("gdpcost.csv") print(df, df.shape) x_data = df.iloc[:, 1] y_data = df.iloc[:, 2] X = x_data Y = y_data plt.figure(figsize=(8, 5)) plt.scatter(X, Y) plt.show() model = Sequential() model.add(Dense(10, input_shape=(1,))) # 输出层 model.add(Dense(1)) # 定义梯度下降算法和损失函数 model.compile(optimizer='adam', loss='mse') # 训练2500次 history = model.fit(X, Y, epochs=250) # 绘制损失函数图像g plt.plot(history.epoch, history.history.get('loss')) plt.show() Y_fit = model.predict(X) w = model.layers[0].get_weights() b = model.layers[1].get_weights() print('weights:', w) print('bias:', b) # plot fit plt.scatter(X, Y, c='r', marker='s') plt.plot(X, Y_fit, c='b', marker='o') plt.legend(['蓝色:拟合点', '红色:散点图']) plt.show()请解释每行代码

1. `import numpy as np`: 导入NumPy库并给它起一个别名np。 2. `import pandas as pd`: 导入Pandas库并给它起一个别名pd。 3. `import matplotlib.pyplot as plt`: 导入Matplotlib库的pyplot模块并给它起一个别名plt。 4. `from keras.models import Sequential`: 从Keras库的models模块中导入Sequential类。 5. `from keras.layers import Dense`: 从Keras库的layers模块中导入Dense类。 6. `plt.rcParams['font.sans-serif'] = 'SimHei'`: 设置中文字体为黑体。 7. `df = pd.read_csv("gdpcost.csv")`: 读取名为gdpcost.csv的CSV文件并将其存储到一个Pandas数据框中。 8. `print(df, df.shape)`: 打印数据框df以及它的形状。 9. `x_data = df.iloc[:, 1]`: 选择df的所有行和第二列的数据作为x_data。 10. `y_data = df.iloc[:, 2]`: 选择df的所有行和第三列的数据作为y_data。 11. `X = x_data`: 将x_data赋值给变量X。 12. `Y = y_data`: 将y_data赋值给变量Y。 13. `plt.figure(figsize=(8, 5))`: 创建一个8x5的图形。 14. `plt.scatter(X, Y)`: 用散点图绘制X和Y的关系。 15. `plt.show()`: 显示图形。 16. `model = Sequential()`: 创建一个新的Sequential模型。 17. `model.add(Dense(10, input_shape=(1,)))`: 在模型中添加一个具有10个神经元和1个输入维度的全连接层。 18. `model.add(Dense(1))`: 在模型中添加一个具有1个神经元的全连接层。 19. `model.compile(optimizer='adam', loss='mse')`: 编译模型,使用Adam梯度下降算法和均方误差损失函数。 20. `history = model.fit(X, Y, epochs=250)`: 训练模型,使用X和Y作为输入和输出数据,并进行250个epoch的训练。 21. `plt.plot(history.epoch, history.history.get('loss'))`: 绘制损失函数随时间的变化图像。 22. `plt.show()`: 显示图形。 23. `Y_fit = model.predict(X)`: 使用训练好的模型对X进行预测并将结果存储到Y_fit中。 24. `w = model.layers[0].get_weights()`: 获取模型第一层的权重并将其存储到w中。 25. `b = model.layers[1].get_weights()`: 获取模型第二层的权重并将其存储到b中。 26. `print('weights:', w)`: 打印w的值。 27. `print('bias:', b)`: 打印b的值。 28. `plt.scatter(X, Y, c='r', marker='s')`: 用散点图绘制原始数据。 29. `plt.plot(X, Y_fit, c='b', marker='o')`: 用线图绘制模型的拟合结果。 30. `plt.legend(['蓝色:拟合点', '红色:散点图'])`: 添加图例。 31. `plt.show()`: 显示图形。

import numpy as np import pandas as pd import matplotlib.pyplot as plt df=pd.read_csv('C:\\Users\ASUS\Desktop\AI\实训\汽车销量数据new.csv',sep=',',header=0) plt.rcParams['font.sans-serif'] = ['SimHei'] plt.figure(figsize=(10,4)) ax1=plt.subplot(121) ax1.scatter(df['price'],df['quantity'],c='b') df=(df-df.min())/(df.max()-df.min()) df.to_csv('quantity.txt',sep='\t',index=False) train_data=df.sample(frac=0.8,replace=False) test_data=df.drop(train_data.index) x_train=train_data['price'].values.reshape(-1, 1) y_train=train_data['quantity'].values x_test=test_data['price'].values.reshape(-1, 1) y_test=test_data['quantity'].values from sklearn.linear_model import LinearRegression import joblib #model=SGDRegressor(max_iter=500,learning_rate='constant',eta0=0.01) model = LinearRegression() #训练模型 model.fit(x_train,y_train) #输出训练结果 pre_score=model.score(x_train,y_train) print('训练集准确性得分=',pre_score) print('coef=',model.coef_,'intercept=',model.intercept_) #保存训练后的模型 joblib.dump(model,'LinearRegression.model') ax2=plt.subplot(122) ax2.scatter(x_train,y_train,label='测试集') ax2.plot(x_train,model.predict(x_train),color='blue') ax2.set_xlabel('工龄') ax2.set_ylabel('工资') plt.legend(loc='upper left') model=joblib.load('LinearRegression.model') y_pred=model.predict(x_test)#得到预测值 print('测试集准确性得分=%.5f'%model.score(x_test,y_test)) #计算测试集的损失(用均方差) MSE=np.mean((y_test - y_pred)**2) print('损失MSE={:.5f}'.format(MSE)) plt.rcParams['font.sans-serif'] = ['SimHei'] plt.figure(figsize=(10,4)) ax1=plt.subplot(121) plt.scatter(x_test,y_test,label='测试集') plt.plot(x_test,y_pred,'r',label='预测回归线') ax1.set_xlabel('工龄') ax1.set_ylabel('工资') plt.legend(loc='upper left') ax2=plt.subplot(122) x=range(0,len(y_test)) plt.plot(x,y_test,'g',label='真实值') plt.plot(x,y_pred,'r',label='预测值') ax2.set_xlabel('样本序号') ax2.set_ylabel('工资') plt.legend(loc='upper right') plt.show()怎么预测价格为15万时的销量

要预测价格为15万时的销量,可以使用训练好的线性回归模型进行预测。首先需要将15万的价格转换为模型可接受的输入格式,即将其转换为一个形状为(1,1)的二维数组: ```python price = np.array([[15]]) ``` 然后使用训练好的模型进行预测: ```python quantity = model.predict(price) print('价格为15万时的销量预测值为:', quantity) ``` 该代码将输出一个预测值,即价格为15万时的销量预测值。
阅读全文

相关推荐

import matplotlib.pyplot as plt import numpy as np import pandas as pd data = pd.read_excel(r"G:\Data.xlsx") def dis(WC, data): WCX = (np.array(data['x']) * WC).sum() WCY = (np.array(data['y']) * WC).sum() x0 = WCX / WC.sum() y0 = WCY / WC.sum() d_j = ((np.array(data['x']) - x0) ** 2 + (np.array(data['y']) - y0) ** 2) ** 0.5 T = (WC * d_j).sum() print('重心法初始选点大致位置:({},{})'.format(x0, y0)) print('总费用T0:{}'.format(T)) # 迭代10次 plt.rcParams['font.sans-serif'] = [u'SimHei'] for i in range(10): WC_j = WC / d_j WCX_j = ((np.array(data['x']) * WC) / d_j).sum() WCY_j = ((np.array(data['y']) * WC) / d_j).sum() x = WCX_j / WC_j.sum() y = WCY_j / WC_j.sum() d_j = ((np.array(data['x']) - x) ** 2 + (np.array(data['y']) - y) ** 2) ** 0.5 T = (WC * d_j).sum() print('经{}次迭代后选址点位置:({},{})'.format(i + 1, x, y)) print('总费用T{}:{}'.format(i + 1, T)) # 画图,如果需要迭代次数多,建议只画第一次和最后一次 plt.figure(figsize=(8, 4)) plt.scatter(np.array(data['x']), np.array(data['y']), [300, 300, 300, 300, 300], c='green', marker='*', alpha=0.7, label='站点') plt.scatter(x, y, [270], c='red', marker='p', alpha=0.7, label='选址点') plt.xlabel('x坐标', fontsize=11) plt.ylabel('y坐标', fontsize=11) plt.grid(True) plt.title('重心法选址,第{}次结果示意图'.format(i + 1), fontsize=14) plt.show() if __name__ == '__main__': # 读取文件 data = pd.read_excel(r"C:\Users\pan15\Desktop\重心法\data.xlsx") # print(data) WC = np.array(data['W']) * np.array(data['C']) dis(WC, data)

分析以下代码#!/usr/bin/python # -*- coding:utf-8 -*- import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt from sklearn import svm from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score # 'sepal length', 'sepal width', 'petal length', 'petal width' iris_feature = u'花萼长度', u'花萼宽度', u'花瓣长度', u'花瓣宽度' if __name__ == "__main__": path = 'D:\\iris.data' # 数据文件路径 data = pd.read_csv(path, header=None) x, y = data[range(4)], data[4] y = pd.Categorical(y).codes x = x[[0, 1]] x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=1, train_size=0.6) # 分类器 clf = svm.SVC(C=0.1, kernel='linear', decision_function_shape='ovr') # clf = svm.SVC(C=0.8, kernel='rbf', gamma=20, decision_function_shape='ovr') clf.fit(x_train, y_train.ravel()) # 准确率 print (clf.score(x_train, y_train)) # 精度 print ('训练集准确率:', accuracy_score(y_train, clf.predict(x_train))) print (clf.score(x_test, y_test)) print ('测试集准确率:', accuracy_score(y_test, clf.predict(x_test))) # decision_function print ('decision_function:\n', clf.decision_function(x_train)) print ('\npredict:\n', clf.predict(x_train)) # 画图 x1_min, x2_min = x.min() x1_max, x2_max = x.max() x1, x2 = np.mgrid[x1_min:x1_max:500j, x2_min:x2_max:500j] # 生成网格采样点 grid_test = np.stack((x1.flat, x2.flat), axis=1) # 测试点 # print 'grid_test = \n', grid_test # Z = clf.decision_function(grid_test) # 样本到决策面的距离 # print Z grid_hat = clf.predict(grid_test) # 预测分类值 grid_hat = grid_hat.reshape(x1.shape) # 使之与输入的形状相同 mpl.rcParams['font.sans-serif'] = [u'SimHei'] mpl.rcParams['axes.unicode_minus'] = False cm_light = mpl.colors.ListedColormap(['#A0FFA0', '#FFA0A0', '#A0A0FF']) cm_dark = mpl.colors.ListedColormap(['g', 'r', 'b']) plt.figure(facecolor='w') plt.pcolormesh(x1, x2, grid_hat, shading='auto', cmap=cm_light) plt.scatter(x[0], x[1], c=y, edgecolors='k', s=50, cmap=cm_dark) # 样本 plt.scatter(x_test[0], x_test[1], s=120, facecolors='none', zorder=10) # 圈中测试集样本 plt.xlabel(iris_feature[0], fontsize=13) plt.ylabel(iris_feature[1], fontsize=13) plt.xlim(x1_min, x1_max) plt.ylim(x2_min, x2_max) plt.title(u'鸢尾花SVM二特征分类', fontsize=16) plt.grid(b=True, ls=':') plt.tight_layout(pad=1.5) plt.show()

最新推荐

recommend-type

python scatter函数用法实例详解

plt.scatter(x, y, c=y, cmap='viridis', label="Scatter Data") # 设置标题和坐标轴标签 plt.title("Python Scatter Plot Example") plt.xlabel("X-axis Label") plt.ylabel("Y-axis Label") # 添加图例 plt....
recommend-type

整体风格与设计理念 整体设计风格简约而不失优雅,采用了简洁的线条元素作为主要装饰,营造出一种现代、专业的视觉感受 配色上以柔和的色调为主,搭配少量鲜明的强调色,既保证了视觉上的舒适感,又能突出重点内容

整体风格与设计理念 整体设计风格简约而不失优雅,采用了简洁的线条元素作为主要装饰,营造出一种现代、专业的视觉感受。配色上以柔和的色调为主,搭配少量鲜明的强调色,既保证了视觉上的舒适感,又能突出重点内容,使整个演示文稿在视觉上具有较强的吸引力和辨识度。 页面布局与内容结构 封面:封面设计简洁大方,“MORIMOTO” 和 “SENYAN” 字样增添了独特的标识性,可根据实际需求替换为汇报人姓名或公司名称等信息,让演示文稿从一开始就展现出专业与个性。 目录页:清晰列出 “工作内容回顾”“工作难点分析”“市场状况概述”“工作目标计划” 四个主要板块,方便观众快速了解演示文稿的整体架构和主要内容,为后续的详细展示做好铺垫。 工作内容回顾页(PART.01):提供了充足的空间用于详细阐述工作内容,可通过复制粘贴文本并选择只保留文字的方式,方便快捷地填充内容,建议使用微软雅黑字体以保证整体风格的一致性。无论是列举日常工作任务、项目执行细节还是工作成果总结,都能清晰呈现,让观众对工作内容有全面而深入的了解。 工作难点分析页(PART.02):这部分页面设计注重实用性,文本框可自由拉伸,方便根据工作难
recommend-type

PureMVC AS3在Flash中的实践与演示:HelloFlash案例分析

资源摘要信息:"puremvc-as3-demo-flash-helloflash:PureMVC AS3 Flash演示" PureMVC是一个开源的、轻量级的、独立于框架的用于MVC(模型-视图-控制器)架构模式的实现。它适用于各种应用程序,并且在多语言环境中得到广泛支持,包括ActionScript、C#、Java等。在这个演示中,使用了ActionScript 3语言进行Flash开发,展示了如何在Flash应用程序中运用PureMVC框架。 演示项目名为“HelloFlash”,它通过一个简单的动画来展示PureMVC框架的工作方式。演示中有一个小蓝框在灰色房间内移动,并且可以通过多种方式与之互动。这些互动包括小蓝框碰到墙壁改变方向、通过拖拽改变颜色和大小,以及使用鼠标滚轮进行缩放等。 在技术上,“HelloFlash”演示通过一个Flash电影的单帧启动应用程序。启动时,会发送通知触发一个启动命令,然后通过命令来初始化模型和视图。这里的视图组件和中介器都是动态创建的,并且每个都有一个唯一的实例名称。组件会与他们的中介器进行通信,而中介器则与代理进行通信。代理用于保存模型数据,并且中介器之间通过发送通知来通信。 PureMVC框架的核心概念包括: - 视图组件:负责显示应用程序的界面部分。 - 中介器:负责与视图组件通信,并处理组件之间的交互。 - 代理:负责封装数据或业务逻辑。 - 控制器:负责管理命令的分派。 在“HelloFlash”中,我们可以看到这些概念的具体实现。例如,小蓝框的颜色变化,是由代理来处理的模型数据;而小蓝框的移动和缩放则是由中介器与组件之间的通信实现的。所有这些操作都是在PureMVC框架的规则和指导原则下完成的。 在Flash开发中,ActionScript 3是主要的编程语言,它是一种面向对象的语言,并且支持复杂的事件处理和数据管理。Flash平台本身提供了一套丰富的API和框架,使得开发者可以创建动态的、交互性强的网络应用。 最后,我们还看到了一个压缩包文件的名称列表“puremvc-as3-demo-flash-helloflash-master”,这表明该演示项目的源代码应该可以在该压缩包中找到,并且可以在支持ActionScript 3的开发环境中进行分析和学习。开发者可以通过这个项目的源代码来深入了解PureMVC框架在Flash应用中的应用,并且学习到如何实现复杂的用户交互、数据处理和事件通信。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

YRC1000 EtherNet_IP通信协议:掌握连接与数据交换的6个关键策略

![YRC1000 EtherNetIP通信功能说明书](https://5.imimg.com/data5/SELLER/Default/2022/12/EE/XV/JL/4130645/yrc1000-csra-cdc101aa-3--1000x1000.jpg) # 摘要 YRC1000 EtherNet/IP通信协议作为工业自动化领域的重要技术之一,本论文对其进行了系统性的介绍和分析。从通信连接策略的实施到数据交换机制的详细阐述,再到高级应用与实践案例的深入探讨,本文全面覆盖了YRC1000的操作原理、配置方法、安全性和性能监控等方面。通过对各种典型应用场景的案例分析,本文不仅总结了
recommend-type

如何设置 OpenFileDialog 用户只能在固定文件夹及其子文件夹里选择文件

在Windows应用程序中,如果你想要限制OpenFileDialog让用户只能在特定的文件夹及其子文件夹中选择文件,你可以通过设置`InitialDirectory`属性和`Filter`属性来实现。以下是步骤: 1. 创建一个`OpenFileDialog`实例: ```csharp OpenFileDialog openFileDialog = new OpenFileDialog(); ``` 2. 设置初始目录(`InitialDirectory`)为你要限制用户选择的起始文件夹,例如: ```csharp string restrictedFolder = "C:\\YourR
recommend-type

掌握Makefile多目标编译与清理操作

资源摘要信息:"makefile学习用测试文件.rar" 知识点: 1. Makefile的基本概念: Makefile是一个自动化编译的工具,它可以根据文件的依赖关系进行判断,只编译发生变化的文件,从而提高编译效率。Makefile文件中定义了一系列的规则,规则描述了文件之间的依赖关系,并指定了如何通过命令来更新或生成目标文件。 2. Makefile的多个目标: 在Makefile中,可以定义多个目标,每个目标可以依赖于其他的文件或目标。当执行make命令时,默认情况下会构建Makefile中的第一个目标。如果你想构建其他的特定目标,可以在make命令后指定目标的名称。 3. Makefile的单个目标编译和删除: 在Makefile中,单个目标的编译通常涉及依赖文件的检查以及编译命令的执行。删除操作则通常用clean规则来定义,它不依赖于任何文件,但执行时会删除所有编译生成的目标文件和中间文件,通常不包含源代码文件。 4. Makefile中的伪目标: 伪目标并不是一个文件名,它只是一个标签,用来标识一个命令序列,通常用于执行一些全局性的操作,比如清理编译生成的文件。在Makefile中使用特殊的伪目标“.PHONY”来声明。 5. Makefile的依赖关系和规则: 依赖关系说明了一个文件是如何通过其他文件生成的,规则则是对依赖关系的处理逻辑。一个规则通常包含一个目标、它的依赖以及用来更新目标的命令。当依赖的时间戳比目标的新时,相应的命令会被执行。 6. Linux环境下的Makefile使用: Makefile的使用在Linux环境下非常普遍,因为Linux是一个类Unix系统,而make工具起源于Unix系统。在Linux环境中,通过终端使用make命令来执行Makefile中定义的规则。Linux中的make命令有多种参数来控制执行过程。 7. Makefile中变量和模式规则的使用: 在Makefile中可以定义变量来存储一些经常使用的字符串,比如编译器的路径、编译选项等。模式规则则是一种简化多个相似规则的方法,它使用模式来匹配多个目标,适用于文件名有规律的情况。 8. Makefile的学习资源: 学习Makefile可以通过阅读相关的书籍、在线教程、官方文档等资源,推荐的书籍有《Managing Projects with GNU Make》。对于初学者来说,实际编写和修改Makefile是掌握Makefile的最好方式。 9. Makefile的调试和优化: 当Makefile较为复杂时,可能出现预料之外的行为,此时需要调试Makefile。可以使用make的“-n”选项来预览命令的执行而不实际运行它们,或者使用“-d”选项来输出调试信息。优化Makefile可以减少不必要的编译,提高编译效率,例如使用命令的输出作为条件判断。 10. Makefile的学习用测试文件: 对于学习Makefile而言,实际操作是非常重要的。通过提供一个测试文件,可以更好地理解Makefile中目标的编译和删除操作。通过编写相应的Makefile,并运行make命令,可以观察目标是如何根据依赖被编译和在需要时如何被删除的。 通过以上的知识点,你可以了解到Makefile的基本用法和一些高级技巧。在Linux环境下,利用Makefile可以有效地管理项目的编译过程,提高开发效率。对于初学者来说,通过实际编写Makefile并结合测试文件进行练习,将有助于快速掌握Makefile的使用。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

模拟IC设计在无线通信中的五大机遇与四大挑战深度解读

![模拟IC设计在无线通信中的五大机遇与四大挑战深度解读](http://www.jrfcl.com/uploads/201909/5d905abeb9c72.jpg) # 摘要 模拟IC设计在无线通信领域扮演着至关重要的角色,随着无线通信市场的快速增长,模拟IC设计的需求也随之上升。本文分析了模拟IC设计在无线通信中的机遇,特别是在5G和物联网(IoT)等新兴技术的推动下,对能效和尺寸提出了更高的要求。同时,本文也探讨了设计过程中所面临的挑战,包括制造工艺的复杂性、电磁干扰、信号完整性、成本控制及技术标准与法规遵循等问题。最后,文章展望了未来的发展趋势,提出了创新设计方法论、人才培养与合作
recommend-type

如何使用C语言在6MHz频率下,按照4800bps波特率和方式1通信协议,为甲乙两台机器编写程序实现数据传输?具体步骤包括甲机发送二进制序列0,1,2,1FH到乙机,以及乙机将接收到的数据存储在地址为20H开始的内部RAM中。通信过程中应考虑查询方式的编程细节。

在C语言中通过串口通信(通常是使用软件UART或硬件提供的API)来实现在6MHz频率下,4800bps波特率和方式1通信协议的数据传输,需要遵循以下步骤: 1. **设置硬件接口**: - 确保你已经连接了正确的串行端口,并配置其工作模式为方式1(通常涉及到控制寄存器的设置,如波特率、数据位数、停止位和奇偶校验等)。对于大多数现代微控制器,例如AVR系列,可以使用`UCSRB`和`UBRRH`寄存器进行配置。 2. **初始化串口**: ```c #include <avr/io.h> // ... (其他头文件) UCSR0B = (1 << TXEN0)