OpenCvSharp 编写函数 RansacCircleFiler(List<Point2f> points
时间: 2024-02-06 21:11:21 浏览: 66
),实现圆形拟合和 RANSAC 算法去除异常点的完整代码如下:
```csharp
using System.Collections.Generic;
using OpenCvSharp;
public static class RansacCircleFilter
{
public static bool FitCircle(List<Point2f> points, out Point2f center, out float radius)
{
// Convert points to Mat
Mat pointsMat = new Mat(points.Count, 2, MatType.CV_32FC1);
for (int i = 0; i < points.Count; i++)
{
pointsMat.Set<float>(i, 0, points[i].X);
pointsMat.Set<float>(i, 1, points[i].Y);
}
// RANSAC parameters
int iterations = 1000; // Number of iterations
float threshold = 10; // Distance threshold for inliers
int inlierCount = 0; // Best inlier count
Point2f[] bestPoints = new Point2f[3]; // Best inlier points
bool success = false; // Whether a good model was found
// RANSAC loop
for (int i = 0; i < iterations; i++)
{
// Randomly select three points
Point2f[] samplePoints = new Point2f[3];
for (int j = 0; j < 3; j++)
{
int index = Cv2.RandInt(0, points.Count);
samplePoints[j] = points[index];
}
// Fit a circle to the sample points
Point2f sampleCenter;
float sampleRadius;
bool sampleSuccess = Cv2.MinEnclosingCircle(samplePoints, out sampleCenter, out sampleRadius);
if (sampleSuccess)
{
// Count inliers
int sampleInlierCount = 0;
Point2f[] sampleInliers = new Point2f[points.Count];
for (int j = 0; j < points.Count; j++)
{
float distance = Cv2.Norm(points[j] - sampleCenter);
if (distance < threshold)
{
sampleInliers[sampleInlierCount] = points[j];
sampleInlierCount++;
}
}
// Check if this is the best model so far
if (sampleInlierCount > inlierCount)
{
inlierCount = sampleInlierCount;
bestPoints = sampleInliers;
center = sampleCenter;
radius = sampleRadius;
// Check if we have enough inliers to declare success
if (inlierCount >= points.Count * 0.5)
{
success = true;
break;
}
}
}
}
// If no good model was found, return false
if (!success)
{
center = new Point2f();
radius = 0;
return false;
}
// Refine the circle using all inliers
Mat inliersMat = new Mat(inlierCount, 2, MatType.CV_32FC1);
for (int i = 0; i < inlierCount; i++)
{
inliersMat.Set<float>(i, 0, bestPoints[i].X);
inliersMat.Set<float>(i, 1, bestPoints[i].Y);
}
Cv2.MinEnclosingCircle(inliersMat, out center, out radius);
return true;
}
}
```
在这个代码中,我们首先将点集转换为 `Mat` 类型,并且设置 RANSAC 算法的一些参数,如迭代次数、距离阈值等。然后,在 RANSAC 的每一轮中,我们随机选取三个点进行拟合,然后计算出所有距离这个模型的距离小于阈值的点的个数,并且记录下这些点。最后,在所有轮中选取拟合效果最好的模型,然后再对选取的所有点进行最小外接圆拟合,得到最终的圆形模型。
这个函数返回一个布尔值,表示是否成功拟合出圆形。如果成功,函数会将圆心和半径输出到参数 `center` 和 `radius` 中。这个函数还支持 RANSAC 算法去除异常点,从而提高拟合的精度。
阅读全文