stm32实验中为什么跑马灯是GPIO为输出而外部中断为中GPIO为输入呢

时间: 2024-04-28 21:24:05 浏览: 40
在STM32实验中,跑马灯和外部中断所控制的GPIO需要不同的配置,因为它们的功能不同。跑马灯需要控制GPIO输出电平高低以实现闪烁效果,而外部中断则需要读取GPIO输入电平以检测外部触发事件。因此,跑马灯需要将GPIO配置为输出模式,而外部中断需要将GPIO配置为输入模式。另外,外部中断还需要启用中断功能,以便在输入电平变化时触发相应的中断处理程序。
相关问题

stm32跑马灯GPIO6个引脚来控制跑马灯

好的,以下是使用 6 个 GPIO 引脚来控制跑马灯的 STM32 代码: ``` #include "stm32f10x.h" int main(void) { GPIO_InitTypeDef GPIO_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOB, ENABLE); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOA, &GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOB, &GPIO_InitStructure); while(1) { GPIO_SetBits(GPIOA, GPIO_Pin_0); GPIO_ResetBits(GPIOA, GPIO_Pin_1); GPIO_ResetBits(GPIOA, GPIO_Pin_2); GPIO_ResetBits(GPIOA, GPIO_Pin_3); GPIO_ResetBits(GPIOB, GPIO_Pin_0); GPIO_ResetBits(GPIOB, GPIO_Pin_1); Delay(500); GPIO_SetBits(GPIOA, GPIO_Pin_1); GPIO_ResetBits(GPIOA, GPIO_Pin_0); GPIO_ResetBits(GPIOA, GPIO_Pin_2); GPIO_ResetBits(GPIOA, GPIO_Pin_3); GPIO_ResetBits(GPIOB, GPIO_Pin_0); GPIO_ResetBits(GPIOB, GPIO_Pin_1); Delay(500); GPIO_SetBits(GPIOA, GPIO_Pin_2); GPIO_ResetBits(GPIOA, GPIO_Pin_0); GPIO_ResetBits(GPIOA, GPIO_Pin_1); GPIO_ResetBits(GPIOA, GPIO_Pin_3); GPIO_ResetBits(GPIOB, GPIO_Pin_0); GPIO_ResetBits(GPIOB, GPIO_Pin_1); Delay(500); GPIO_SetBits(GPIOA, GPIO_Pin_3); GPIO_ResetBits(GPIOA, GPIO_Pin_0); GPIO_ResetBits(GPIOA, GPIO_Pin_1); GPIO_ResetBits(GPIOA, GPIO_Pin_2); GPIO_ResetBits(GPIOB, GPIO_Pin_0); GPIO_ResetBits(GPIOB, GPIO_Pin_1); Delay(500); GPIO_SetBits(GPIOB, GPIO_Pin_0); GPIO_ResetBits(GPIOA, GPIO_Pin_0); GPIO_ResetBits(GPIOA, GPIO_Pin_1); GPIO_ResetBits(GPIOA, GPIO_Pin_2); GPIO_ResetBits(GPIOA, GPIO_Pin_3); GPIO_ResetBits(GPIOB, GPIO_Pin_1); Delay(500); GPIO_SetBits(GPIOB, GPIO_Pin_1); GPIO_ResetBits(GPIOA, GPIO_Pin_0); GPIO_ResetBits(GPIOA, GPIO_Pin_1); GPIO_ResetBits(GPIOA, GPIO_Pin_2); GPIO_ResetBits(GPIOA, GPIO_Pin_3); GPIO_ResetBits(GPIOB, GPIO_Pin_0); Delay(500); } } void Delay(__IO uint32_t nCount) { for(; nCount != 0; nCount--); } ``` 以上代码使用了 6 个 GPIO 引脚来控制跑马灯,其中 GPIO A0~A3 引脚控制前四个 LED 灯,GPIO B0~B1 引脚控制后两个 LED 灯,通过循环控制每个引脚的亮灭状态,来实现跑马灯效果。同样需要注意电压和电流的限制,防止硬件损坏。

stm32实验一:跑马灯

stm32实验一是一个简单的跑马灯实验,旨在通过控制STM32微控制器上的LED灯的亮灭来模拟跑马灯效果。 在实验中,我们需要连接一个或多个LED灯到STM32微控制器的相应引脚上。然后,通过编写适当的C代码,控制这些引脚的电平状态来控制LED灯的亮灭。 编写代码时,我们可以使用STM32的开发工具(如Keil MDK或STM32CubeIDE)来创建一个新的工程,并选择适当的芯片型号。然后,我们可以在主函数中编写代码来控制LED灯的亮灭。具体来说,我们可以使用GPIO库函数来初始化和配置LED引脚,并使用延时函数来控制LED灯的亮灭间隔。 在代码中,我们可以使用循环结构来实现跑马灯的效果。通过依次点亮和熄灭LED灯的不同引脚,我们可以实现LED灯在不同位置上闪烁的效果,从而模拟出跑马灯的效果。 完成代码编写后,我们可以将代码烧录到STM32微控制器中,并通过连接电源来运行实验。当我们启动实验时,LED灯将按照我们设计的程序来闪烁,并呈现出跑马灯的效果。 总的来说,stm32实验一是一个简单而有趣的实验,通过控制STM32微控制器上的LED灯的亮灭,我们可以模拟出跑马灯的效果,并学习如何通过代码控制硬件。这个实验为我们后续学习和开发更复杂的STM32应用奠定了基础。

相关推荐

最新推荐

recommend-type

嵌入式实验报告 stm32f103 跑马灯实验 GPIO口操作

2. **GPIO (General Purpose Input/Output)**:GPIO口是STM32芯片上的一种通用输入输出端口,可以配置为输入或输出,用于连接外部设备,如LED。在跑马灯实验中,GPIO口被配置为输出模式,以控制LED的亮灭状态。 3. ...
recommend-type

【单片机项目】制作一辆基于STM32的智能小车——概述

点亮跑马灯是初学者入门的经典实验,通常涉及到GPIO(通用输入/输出)的配置。GPIO是单片机与外界交互的基础,用于控制LED等外部设备的开关状态。当作者仅通过下载程序实现跑马灯而未理解其背后的逻辑时,他并未感受...
recommend-type

计算机人脸表情动画技术发展综述

"这篇论文是关于计算机人脸表情动画技术的综述,主要探讨了近几十年来该领域的进展,包括基于几何学和基于图像的两种主要方法。作者姚俊峰和陈琪分别来自厦门大学软件学院,他们的研究方向涉及计算机图形学、虚拟现实等。论文深入分析了各种技术的优缺点,并对未来的发展趋势进行了展望。" 计算机人脸表情动画技术是计算机图形学的一个关键分支,其目标是创建逼真的面部表情动态效果。这一技术在电影、游戏、虚拟现实、人机交互等领域有着广泛的应用潜力,因此受到学术界和产业界的广泛关注。 基于几何学的方法主要依赖于对人体面部肌肉运动的精确建模。这种技术通常需要详细的人脸解剖学知识,通过数学模型来模拟肌肉的收缩和舒张,进而驱动3D人脸模型的表情变化。优点在于可以实现高度精确的表情控制,但缺点是建模过程复杂,对初始数据的需求高,且难以适应个体间的面部差异。 另一方面,基于图像的方法则侧重于利用实际的面部图像或视频来生成动画。这种方法通常包括面部特征检测、表情识别和实时追踪等步骤。通过机器学习和图像处理技术,可以从输入的图像中提取面部特征点,然后将这些点的变化映射到3D模型上,以实现表情的动态生成。这种方法更灵活,能较好地处理个体差异,但可能受光照、角度和遮挡等因素影响,导致动画质量不稳定。 论文中还可能详细介绍了各种代表性的算法和技术,如线性形状模型(LBS)、主动形状模型(ASM)、主动外观模型(AAM)以及最近的深度学习方法,如卷积神经网络(CNN)在表情识别和生成上的应用。同时,作者可能也讨论了如何解决实时性和逼真度之间的平衡问题,以及如何提升面部表情的自然过渡和细节表现。 未来,人脸表情动画技术的发展趋势可能包括更加智能的自动化建模工具,更高精度的面部捕捉技术,以及深度学习等人工智能技术在表情生成中的进一步应用。此外,跨学科的合作,如神经科学、心理学与计算机科学的结合,有望推动这一领域取得更大的突破。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实时处理中的数据流管理:高效流动与网络延迟优化

![实时处理中的数据流管理:高效流动与网络延迟优化](https://developer.qcloudimg.com/http-save/yehe-admin/70e650adbeb09a7fd67bf8deda877189.png) # 1. 数据流管理的理论基础 数据流管理是现代IT系统中处理大量实时数据的核心环节。在本章中,我们将探讨数据流管理的基本概念、重要性以及它如何在企业级应用中发挥作用。我们首先会介绍数据流的定义、它的生命周期以及如何在不同的应用场景中传递信息。接下来,本章会分析数据流管理的不同层面,包括数据的捕获、存储、处理和分析。此外,我们也会讨论数据流的特性,比如它的速度
recommend-type

如何确认skopt库是否已成功安装?

skopt库,全称为Scikit-Optimize,是一个用于贝叶斯优化的库。要确认skopt库是否已成功安装,可以按照以下步骤操作: 1. 打开命令行工具,例如在Windows系统中可以使用CMD或PowerShell,在Unix-like系统中可以使用Terminal。 2. 输入命令 `python -m skopt` 并执行。如果安装成功,该命令将会显示skopt库的版本信息以及一些帮助信息。如果出现 `ModuleNotFoundError` 错误,则表示库未正确安装。 3. 你也可以在Python环境中导入skopt库来测试,运行如下代码: ```python i
recommend-type

关系数据库的关键字搜索技术综述:模型、架构与未来趋势

本文档深入探讨了"基于关键字的数据库搜索研究综述"这一主题,重点关注于关系数据库领域的关键技术。首先,作者从数据建模的角度出发,概述了关键字搜索在关系数据库中的应用,包括如何设计和构建有效的数据模型,以便更好地支持关键字作为查询条件进行高效检索。这些模型可能涉及索引优化、数据分区和规范化等,以提升查询性能和查询结果的相关性。 在体系结构方面,文章对比了不同的系统架构,如全文搜索引擎与传统的关系型数据库管理系统(RDBMS)的融合,以及基于云计算或分布式计算环境下的关键字搜索解决方案。这些架构的选择和设计对于系统的扩展性、响应时间和查询复杂度有重大影响。 关键算法部分是研究的核心,文章详细分析了诸如倒排索引、布尔逻辑运算、TF-IDF(Term Frequency-Inverse Document Frequency,词频-逆文档频率)等算法在关键字搜索中的作用。同时,也讨论了近似匹配、模糊查询以及动态调整权重等技术,这些都是为了提高搜索的准确性和用户体验。 然而,论文并未忽视现有技术存在的问题,比如查询效率低下、对自然语言理解的局限、数据隐私保护等。针对这些问题,作者提出了未来研究的方向,包括但不限于改进算法以提升搜索速度,增强对用户查询意图的理解,以及开发更安全的隐私保护策略。 此外,本文还提及了关键词搜索的关键术语,如"top-k查询",这是一种返回最相关结果前k个的查询方式,常用于信息检索和推荐系统中。而"数据库模式"则涵盖了数据结构和组织方式,是实现关键字搜索的基础。 这篇综述论文旨在为研究人员和开发者提供一个全面的视角,以便他们能够理解基于关键字的数据库搜索技术的现状,识别挑战,并推动该领域未来的发展。通过阅读这篇论文,读者可以了解到如何设计更智能、更高效的数据库搜索系统,以满足日益增长的数据处理需求。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实时识别加速秘籍:内存优化与并行处理技术

![实时识别加速秘籍:内存优化与并行处理技术](https://ares.decipherzone.com/blog-manager/uploads/banner_webp_24b8d9dc-ec88-456d-aa06-7cc90c0c584a.webp) # 1. 内存优化与并行处理技术概述 ## 1.1 内存优化与并行处理的兴起背景 随着计算需求的爆炸式增长,应用程序对硬件资源的要求也越来越高。内存作为程序运行的直接支撑环境,其性能直接影响到整个系统的效率。在有限的物理内存条件下,如何通过优化手段提升内存使用效率,减少资源浪费,成为了IT行业研究的热点问题之一。同时,并行处理技术利用
recommend-type

matlab二维数组保留6位小数

在MATLAB中,如果你想要显示二维数组的元素保留到6位小数,可以使用`format`函数设置显示格式,但请注意,这并不会改变数据本身的精度,仅仅是改变了输出的显示方式。如果需要在特定的上下文中保留数值精度(比如输出到文本文件),你可能需要使用其他方法,如`fprintf`或者在保存数据时指定精度。 下面是一个如何设置MATLAB命令窗口输出格式的示例: ```matlab format long e; % 设置为长格式,并保留6位小数 A = [1.23456789, 2.12345678; 3.45678901, 4.34567890]; disp(A); ``` 上述