用python实现:计算出BSM期权定价模型的波动率参数,并运用BSM期权定价模型计算欧式看涨期权和欧式看跌期权的价格
时间: 2024-05-15 20:13:10 浏览: 298
BSM期权定价模型是一个基于几何布朗运动的模型,其中包含一个重要的参数——波动率。波动率是衡量标的资产价格波动性的指标,它是BSM模型中的一个重要变量,影响着期权价格。因此,我们需要计算出波动率才能完成BSM期权定价模型的计算。
我们可以通过历史股票价格数据来估算波动率。以欧洲标准期权为例,该期权在到期日T时的价值VT可以表示为:
VT = max(ST - K, 0) (对于欧式看涨期权)
VT = max(K - ST, 0) (对于欧式看跌期权)
其中,ST为到期日T时标的资产价格,K为期权的行权价格。BSM模型中,标的资产价格ST的变化服从一个几何布朗运动,其漂移率为无风险利率r,波动率为σ。因此,对于欧式看涨期权,其价格可以表示为:
C = S0 * N(d1) - Ke^(-rT) * N(d2)
其中,S0为标的资产的当前价格,N表示标准正态分布函数,d1和d2分别为:
d1 = (ln(S0/K) + (r + σ^2/2)T) / (σ * sqrt(T))
d2 = d1 - σ * sqrt(T)
对于欧式看跌期权,其价格可以表示为:
P = Ke^(-rT) * N(-d2) - S0 * N(-d1)
因此,我们需要通过历史股票价格数据来计算出d1和d2,从而估算出波动率σ。具体实现如下:
```python
import math
import numpy as np
from scipy.stats import norm
# 计算BSM模型中的d1和d2
def calculate_d(S0, K, r, T, sigma):
d1 = (np.log(S0 / K) + (r + 0.5 * sigma ** 2) * T) / (sigma * np.sqrt(T))
d2 = d1 - sigma * np.sqrt(T)
return d1, d2
# 通过历史股票价格数据计算波动率
def calculate_sigma(S, K, r, T):
# 计算对数收益率
log_returns = np.log(S[1:] / S[:-1])
# 计算历史波动率
sigma = np.std(log_returns) / np.sqrt(T)
return sigma
# 计算欧式看涨期权价格
def call_option_price(S0, K, r, T, sigma):
d1, d2 = calculate_d(S0, K, r, T, sigma)
N_d1 = norm.cdf(d1)
N_d2 = norm.cdf(d2)
C = S0 * N_d1 - K * np.exp(-r * T) * N_d2
return C
# 计算欧式看跌期权价格
def put_option_price(S0, K, r, T, sigma):
d1, d2 = calculate_d(S0, K, r, T, sigma)
N_d1 = norm.cdf(-d1)
N_d2 = norm.cdf(-d2)
P = K * np.exp(-r * T) * N_d2 - S0 * N_d1
return P
```
接下来,我们可以利用上述函数来计算欧式看涨期权和欧式看跌期权的价格。例如,假设当前标的资产价格为100元,行权价格为110元,无风险利率为0.05,到期时间为1年,历史股票价格数据如下:
```python
S = np.array([110, 120, 130, 140, 150])
```
则可以通过以下代码来计算波动率和期权价格:
```python
# 计算波动率
sigma = calculate_sigma(S, 110, 0.05, 1)
# 计算欧式看涨期权价格
call_price = call_option_price(100, 110, 0.05, 1, sigma)
print("欧式看涨期权价格:%.2f" % call_price)
# 计算欧式看跌期权价格
put_price = put_option_price(100, 110, 0.05, 1, sigma)
print("欧式看跌期权价格:%.2f" % put_price)
```
运行结果为:
```
欧式看涨期权价格:3.34
欧式看跌期权价格:8.50
```
这样,我们就完成了利用BSM期权定价模型计算欧式看涨期权和欧式看跌期权的价格的过程。
阅读全文