cv::Mat input_image = imread("input.jpg", cv::IMREAD_COLOR);cv::Mat gray_image;cv::cvtColor(input_image, gray_image, cv::COLOR_BGR2GRAY);gray_image.convertTo(gray_image, CV_8U);用python改写这段代码
时间: 2024-02-05 15:04:55 浏览: 142
以下是将上述C++代码转换为Python代码的方法:
```
import cv2
input_image = cv2.imread('input.jpg')
gray_image = cv2.cvtColor(input_image, cv2.COLOR_BGR2GRAY)
gray_image = cv2.convertScaleAbs(gray_image, alpha=(255.0/65535.0)) # 将图像转换为8位深度
if input_image is None:
print("Input image is empty!")
```
这里使用了OpenCV的Python绑定,具体实现与C++代码相似。需要注意的是,在Python中,OpenCV的函数名与C++中略有不同,例如cv::cvtColor()在Python中是cv2.cvtColor(),cv::IMREAD_COLOR在Python中是cv2.IMREAD_COLOR。同时,Python中也提供了cv2.convertScaleAbs()函数,可以将图像转换为8位深度。
相关问题
(-5:Bad argument) image is empty or has incorrect depth (!=CV_8U) in function 'cv::xfeatures2d::SIFT_Impl::detectAndCompute'什么意思如何解决
这个错误通常是由于输入图像的深度不正确引起的。SIFT算法要求输入图像的深度必须是8位无符号整数(CV_8U),如果图像的深度不正确,则会出现此错误。
要解决这个问题,你可以尝试将输入图像转换为正确的深度,可以使用OpenCV库提供的函数cv::convertScaleAbs()将图像转换为8位无符号整数深度。具体实现代码如下:
```
cv::Mat input_image = imread("input.jpg", cv::IMREAD_COLOR);
cv::Mat gray_image;
cv::cvtColor(input_image, gray_image, cv::COLOR_BGR2GRAY);
gray_image.convertTo(gray_image, CV_8U);
```
如果你已经将图像转换为正确的深度,但仍然出现此错误,请确保图像不为空,可以使用以下代码检查图像是否为空:
```
if (input_image.empty())
{
std::cout << "Input image is empty!" << std::endl;
return -1;
}
```
希望这些信息能够帮助你解决问题。
(-215:Assertion failed) src.type() == CV_8UC1 in function 'cv::threshold'
This error message is related to OpenCV and it indicates that the input image passed to the threshold function is not of the expected type. The threshold function expects a single-channel (grayscale) image with pixel values of type unsigned 8-bit integer (CV_8UC1).
To fix this error, you should first check that the input image is a grayscale image with a single channel. If the input image is a color image or has more than one channel, you should convert it to grayscale using cvtColor() function.
You should also make sure that the pixel values in the image are of type unsigned 8-bit integer. If the pixel values are not of this type, you can use the convertTo() function to convert the pixel values to the correct type.
Here's an example of how to convert an input image to grayscale and convert the pixel values to unsigned 8-bit integer:
```
cv::Mat input_image = cv::imread("input_image.jpg");
cv::Mat gray_image;
cv::cvtColor(input_image, gray_image, cv::COLOR_BGR2GRAY);
cv::Mat threshold_image;
gray_image.convertTo(threshold_image, CV_8UC1);
cv::threshold(threshold_image, threshold_image, 128, 255, cv::THRESH_BINARY);
```
阅读全文