acc = torch.sum(outputs == label)这句代码是什么意思

时间: 2023-10-09 22:17:31 浏览: 37
这句代码计算了一个张量 `outputs` 中等于标签 `label` 的元素数量,并将其赋值给变量 `acc`。其中,`==` 表示逐元素比较,返回一个布尔类型的张量,其中等于 `label` 的元素为 `True`,不等于 `label` 的元素为 `False`。在 PyTorch 中,布尔类型的张量可以被转化为整型类型,`True` 转化为 1,`False` 转化为 0。因此,`torch.sum(outputs == label)` 的结果即为 `outputs` 中等于 `label` 的元素数量。
相关问题

LDAM损失函数pytorch代码如下:class LDAMLoss(nn.Module): def init(self, cls_num_list, max_m=0.5, weight=None, s=30): super(LDAMLoss, self).init() m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list)) m_list = m_list * (max_m / np.max(m_list)) m_list = torch.cuda.FloatTensor(m_list) self.m_list = m_list assert s > 0 self.s = s if weight is not None: weight = torch.FloatTensor(weight).cuda() self.weight = weight self.cls_num_list = cls_num_list def forward(self, x, target): index = torch.zeros_like(x, dtype=torch.uint8) index_float = index.type(torch.cuda.FloatTensor) batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(1,0)) # 0,1 batch_m = batch_m.view((16, 1)) # size=(batch_size, 1) (-1,1) x_m = x - batch_m output = torch.where(index, x_m, x) if self.weight is not None: output = output * self.weight[None, :] target = torch.flatten(target) # 将 target 转换成 1D Tensor logit = output * self.s return F.cross_entropy(logit, target, weight=self.weight) 模型部分参数如下:# 设置全局参数 model_lr = 1e-5 BATCH_SIZE = 16 EPOCHS = 50 DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') use_amp = True use_dp = True classes = 7 resume = None CLIP_GRAD = 5.0 Best_ACC = 0 #记录最高得分 use_ema=True model_ema_decay=0.9998 start_epoch=1 seed=1 seed_everything(seed) # 数据增强 mixup mixup_fn = Mixup( mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None, prob=0.1, switch_prob=0.5, mode='batch', label_smoothing=0.1, num_classes=classes) # 读取数据集 dataset_train = datasets.ImageFolder('/home/adminis/hpy/ConvNextV2_Demo/RAF-DB/RAF/train', transform=transform) dataset_test = datasets.ImageFolder("/home/adminis/hpy/ConvNextV2_Demo/RAF-DB/RAF/valid", transform=transform_test) 帮我用pytorch实现模型在模型训练中使用LDAM损失函数

好的,下面是使用LDAM损失函数训练模型的代码: ```python import torch.optim as optim from torch.optim.lr_scheduler import CosineAnnealingLR from torch.utils.data import DataLoader # 定义LDAM损失函数 class LDAMLoss(nn.Module): def __init__(self, cls_num_list, max_m=0.5, weight=None, s=30): super(LDAMLoss, self).__init__() m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list)) m_list = m_list * (max_m / np.max(m_list)) m_list = torch.cuda.FloatTensor(m_list) self.m_list = m_list assert s > 0 self.s = s if weight is not None: weight = torch.FloatTensor(weight).cuda() self.weight = weight self.cls_num_list = cls_num_list def forward(self, x, target): index = torch.zeros_like(x, dtype=torch.uint8) index_float = index.type(torch.cuda.FloatTensor) batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(1,0)) # 0,1 batch_m = batch_m.view((x.size(0), 1)) # size=(batch_size, 1) x_m = x - batch_m output = torch.where(index, x_m, x) if self.weight is not None: output = output * self.weight[None, :] target = torch.flatten(target) # 将 target 转换成 1D Tensor logit = output * self.s return F.cross_entropy(logit, target, weight=self.weight) # 定义模型 model = models.resnet18(pretrained=True) num_ftrs = model.fc.in_features model.fc = nn.Linear(num_ftrs, classes) model.to(DEVICE) # 定义优化器和学习率调整器 optimizer = optim.Adam(model.parameters(), lr=model_lr) scheduler = CosineAnnealingLR(optimizer, T_max=EPOCHS, eta_min=1e-6) # 定义LDAM损失函数 cls_num_list = [len(dataset_train[dataset_train.targets == t]) for t in range(classes)] criterion = LDAMLoss(cls_num_list) # 定义数据加载器 train_loader = DataLoader(dataset_train, batch_size=BATCH_SIZE, shuffle=True, num_workers=4, pin_memory=True) test_loader = DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=False, num_workers=4, pin_memory=True) # 训练模型 best_acc = 0.0 for epoch in range(start_epoch, EPOCHS + 1): model.train() train_loss = 0.0 train_corrects = 0 for inputs, labels in train_loader: inputs, labels = inputs.to(DEVICE), labels.to(DEVICE) if use_dp: inputs, labels = dp(inputs, labels) if use_amp: with amp.autocast(): inputs, labels = mixup_fn(inputs, labels) outputs = model(inputs) loss = criterion(outputs, labels) scaler.scale(loss).backward() scaler.unscale_(optimizer) torch.nn.utils.clip_grad_norm_(model.parameters(), CLIP_GRAD) scaler.step(optimizer) scaler.update() else: inputs, labels_a, labels_b, lam = mixup_fn(inputs, labels) outputs = model(inputs) loss = mixup_criterion(criterion, outputs, labels_a, labels_b, lam) loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), CLIP_GRAD) optimizer.step() optimizer.zero_grad() train_loss += loss.item() * inputs.size(0) _, preds = torch.max(outputs, 1) train_corrects += torch.sum(preds == labels.data) train_loss /= len(dataset_train) train_acc = train_corrects.double() / len(dataset_train) model.eval() test_loss = 0.0 test_corrects = 0 with torch.no_grad(): for inputs, labels in test_loader: inputs, labels = inputs.to(DEVICE), labels.to(DEVICE) outputs = model(inputs) loss = criterion(outputs, labels) test_loss += loss.item() * inputs.size(0) _, preds = torch.max(outputs, 1) test_corrects += torch.sum(preds == labels.data) test_loss /= len(dataset_test) test_acc = test_corrects.double() / len(dataset_test) # 更新最佳模型 if test_acc > best_acc: if use_ema: ema_model.load_state_dict(model.state_dict()) best_acc = test_acc # 更新学习率 scheduler.step() # 打印训练结果 print('Epoch [{}/{}], Train Loss: {:.4f}, Train Acc: {:.4f}, Test Loss: {:.4f}, Test Acc: {:.4f}'.format( epoch, EPOCHS, train_loss, train_acc, test_loss, test_acc)) ```

1.使用PyTorch实现LeNet网络 2.使用实验7的 Fashion MNIST 对LeNet进行训练和测试,优化算法采用SGD或Adam,torch.optim.SGD 或 torch.optim.Adam 3.分别绘制训练和测试的损失函数曲线和分类正确率曲线 4.调节BatchSize、学习率,并依据测试损失曲线的拐点确定最佳模型,保存该模型 5.使用测试集测试所保存模型的性能,以混淆矩阵展示

好的,这是一个深度学习的任务,需要使用PyTorch实现LeNet网络并对Fashion MNIST数据集进行训练和测试,我来帮您一步一步完成这个任务。 首先,我们需要导入必要的包:torch、torchvision、numpy和matplotlib。 ```python import torch import torch.nn as nn import torch.optim as optim import torchvision import numpy as np import matplotlib.pyplot as plt ``` 接下来,我们定义LeNet网络的结构。 ```python class LeNet(nn.Module): def __init__(self): super(LeNet, self).__init__() self.conv1 = nn.Conv2d(1, 6, 5) self.pool1 = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.pool2 = nn.MaxPool2d(2, 2) self.fc1 = nn.Linear(16 * 4 * 4, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.pool1(torch.relu(self.conv1(x))) x = self.pool2(torch.relu(self.conv2(x))) x = x.view(-1, 16 * 4 * 4) x = torch.relu(self.fc1(x)) x = torch.relu(self.fc2(x)) x = self.fc3(x) return x ``` 这里我们定义了一个包含2个卷积层和3个全连接层的LeNet网络,其中第一个卷积层有6个5x5的卷积核,第二个卷积层有16个5x5的卷积核。每个卷积层后面都跟了一个2x2的最大池化层,然后是3个全连接层,分别有120、84和10个神经元。 接下来,我们加载Fashion MNIST数据集,并将其划分为训练集和验证集。 ```python transform = torchvision.transforms.Compose([ torchvision.transforms.ToTensor(), torchvision.transforms.Normalize((0.1307,), (0.3081,)) ]) train_dataset = torchvision.datasets.FashionMNIST(root='./data', train=True, download=True, transform=transform) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True) val_dataset = torchvision.datasets.FashionMNIST(root='./data', train=False, download=True, transform=transform) val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=64, shuffle=False) ``` 这里我们使用了PyTorch内置的Fashion MNIST数据集,并使用了一个Compose对象将ToTensor和Normalize变换组合起来。我们将训练集和验证集分别放入DataLoader中,batch_size设置为64,shuffle设置为True和False,表示训练集需要打乱,而验证集不需要。 接下来,我们定义优化算法和损失函数。 ```python net = LeNet() criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.01) ``` 这里我们使用了SGD优化算法和交叉熵损失函数,学习率设置为0.01。 接下来,我们开始训练模型。 ```python train_losses = [] train_accs = [] val_losses = [] val_accs = [] for epoch in range(10): train_loss = 0.0 train_acc = 0.0 val_loss = 0.0 val_acc = 0.0 net.train() for i, (inputs, labels) in enumerate(train_loader): optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() train_loss += loss.item() _, predicted = torch.max(outputs.data, 1) train_acc += (predicted == labels).sum().item() net.eval() with torch.no_grad(): for inputs, labels in val_loader: outputs = net(inputs) loss = criterion(outputs, labels) val_loss += loss.item() _, predicted = torch.max(outputs.data, 1) val_acc += (predicted == labels).sum().item() train_loss /= len(train_loader) train_acc /= len(train_dataset) val_loss /= len(val_loader) val_acc /= len(val_dataset) train_losses.append(train_loss) train_accs.append(train_acc) val_losses.append(val_loss) val_accs.append(val_acc) print('Epoch %d: train_loss=%.4f train_acc=%.4f val_loss=%.4f val_acc=%.4f' % ( epoch+1, train_loss, train_acc, val_loss, val_acc)) ``` 这里我们训练了10个epoch,每个epoch分别对训练集进行一次迭代,同时在验证集上计算loss和accuracy。在每个epoch结束时,我们将训练集和验证集的loss和accuracy记录下来。 最后,我们绘制训练和验证的损失函数曲线和分类正确率曲线。 ```python fig, ax = plt.subplots(1, 2, figsize=(12, 6)) ax[0].plot(train_losses, label='train') ax[0].plot(val_losses, label='val') ax[0].set_xlabel('epoch') ax[0].set_ylabel('loss') ax[0].set_title('Training and validation loss') ax[0].legend() ax[1].plot(train_accs, label='train') ax[1].plot(val_accs, label='val') ax[1].set_xlabel('epoch') ax[1].set_ylabel('accuracy') ax[1].set_title('Training and validation accuracy') ax[1].legend() plt.show() ``` 这里我们使用了matplotlib库来绘制图形,包括训练和验证的损失函数曲线和分类正确率曲线。 接下来,我们调节BatchSize和学习率,并依据测试损失曲线的拐点确定最佳模型,并保存该模型。 ```python train_losses = [] train_accs = [] val_losses = [] val_accs = [] best_val_loss = float('inf') best_model = None batch_sizes = [16, 32, 64, 128, 256] learning_rates = [0.001, 0.01, 0.1, 1] for batch_size in batch_sizes: train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True) val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=batch_size, shuffle=False) for learning_rate in learning_rates: net = LeNet() criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=learning_rate) for epoch in range(10): train_loss = 0.0 train_acc = 0.0 val_loss = 0.0 val_acc = 0.0 net.train() for i, (inputs, labels) in enumerate(train_loader): optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() train_loss += loss.item() _, predicted = torch.max(outputs.data, 1) train_acc += (predicted == labels).sum().item() net.eval() with torch.no_grad(): for inputs, labels in val_loader: outputs = net(inputs) loss = criterion(outputs, labels) val_loss += loss.item() _, predicted = torch.max(outputs.data, 1) val_acc += (predicted == labels).sum().item() train_loss /= len(train_loader) train_acc /= len(train_dataset) val_loss /= len(val_loader) val_acc /= len(val_dataset) train_losses.append(train_loss) train_accs.append(train_acc) val_losses.append(val_loss) val_accs.append(val_acc) if val_loss < best_val_loss: best_val_loss = val_loss best_model = net.state_dict() print('BatchSize=%d LearningRate=%.3f Epoch %d: train_loss=%.4f train_acc=%.4f val_loss=%.4f val_acc=%.4f' % ( batch_size, learning_rate, epoch+1, train_loss, train_acc, val_loss, val_acc)) print('Best validation loss:', best_val_loss) torch.save(best_model, 'best_model.pth') ``` 这里我们使用了两个for循环,分别对BatchSize和学习率进行调节,并在每个epoch结束时记录train_loss、train_acc、val_loss和val_acc。在每次更新最佳模型时,我们将模型的参数保存下来。 最后,我们使用测试集测试所保存模型的性能,并以混淆矩阵展示。 ```python test_dataset = torchvision.datasets.FashionMNIST(root='./data', train=False, download=True, transform=transform) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=False) net = LeNet() net.load_state_dict(torch.load('best_model.pth')) net.eval() with torch.no_grad(): all_predicted = [] all_labels = [] for inputs, labels in test_loader: outputs = net(inputs) _, predicted = torch.max(outputs.data, 1) all_predicted.extend(predicted.numpy()) all_labels.extend(labels.numpy()) all_predicted = np.array(all_predicted) all_labels = np.array(all_labels) confusion_matrix = np.zeros((10, 10)) for i in range(len(all_predicted)): confusion_matrix[all_labels[i], all_predicted[i]] += 1 print(confusion_matrix) ``` 这里我们加载保存的最佳模型,并使用测试集进行测试。使用numpy库创建混淆矩阵,将模型预测结果与真实标签进行比对,并将结果输出。

相关推荐

最新推荐

recommend-type

患者发生输液反应的应急预案及护理流程(医院护理资料).docx

患者发生输液反应的应急预案及护理流程(医院护理资料).docx
recommend-type

chromedriver-win64_121.0.6105.0.zip

chromedriver-win64_121.0.6105.0.zip
recommend-type

chromedriver-win64_120.0.6099.35.zip

chromedriver-win64_120.0.6099.35.zip
recommend-type

保险服务门店新年工作计划PPT.pptx

在保险服务门店新年工作计划PPT中,包含了五个核心模块:市场调研与目标设定、服务策略制定、营销与推广策略、门店形象与环境优化以及服务质量监控与提升。以下是每个模块的关键知识点: 1. **市场调研与目标设定** - **了解市场**:通过收集和分析当地保险市场的数据,包括产品种类、价格、市场需求趋势等,以便准确把握市场动态。 - **竞争对手分析**:研究竞争对手的产品特性、优势和劣势,以及市场份额,以进行精准定位和制定有针对性的竞争策略。 - **目标客户群体定义**:根据市场需求和竞争情况,明确服务对象,设定明确的服务目标,如销售额和客户满意度指标。 2. **服务策略制定** - **服务计划制定**:基于市场需求定制服务内容,如咨询、报价、理赔协助等,并规划服务时间表,保证服务流程的有序执行。 - **员工素质提升**:通过专业培训提升员工业务能力和服务意识,优化服务流程,提高服务效率。 - **服务环节管理**:细化服务流程,明确责任,确保服务质量和效率,强化各环节之间的衔接。 3. **营销与推广策略** - **节日营销活动**:根据节庆制定吸引人的活动方案,如新春送福、夏日促销,增加销售机会。 - **会员营销**:针对会员客户实施积分兑换、优惠券等策略,增强客户忠诚度。 4. **门店形象与环境优化** - **环境设计**:优化门店外观和内部布局,营造舒适、专业的服务氛围。 - **客户服务便利性**:简化服务手续和所需材料,提升客户的体验感。 5. **服务质量监控与提升** - **定期评估**:持续监控服务质量,发现问题后及时调整和改进,确保服务质量的持续提升。 - **流程改进**:根据评估结果不断优化服务流程,减少等待时间,提高客户满意度。 这份PPT旨在帮助保险服务门店在新的一年里制定出有针对性的工作计划,通过科学的策略和细致的执行,实现业绩增长和客户满意度的双重提升。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB图像去噪最佳实践总结:经验分享与实用建议,提升去噪效果

![MATLAB图像去噪最佳实践总结:经验分享与实用建议,提升去噪效果](https://img-blog.csdnimg.cn/d3bd9b393741416db31ac80314e6292a.png) # 1. 图像去噪基础 图像去噪旨在从图像中去除噪声,提升图像质量。图像噪声通常由传感器、传输或处理过程中的干扰引起。了解图像噪声的类型和特性对于选择合适的去噪算法至关重要。 **1.1 噪声类型** * **高斯噪声:**具有正态分布的加性噪声,通常由传感器热噪声引起。 * **椒盐噪声:**随机分布的孤立像素,值要么为最大值(白色噪声),要么为最小值(黑色噪声)。 * **脉冲噪声
recommend-type

InputStream in = Resources.getResourceAsStream

`Resources.getResourceAsStream`是MyBatis框架中的一个方法,用于获取资源文件的输入流。它通常用于加载MyBatis配置文件或映射文件。 以下是一个示例代码,演示如何使用`Resources.getResourceAsStream`方法获取资源文件的输入流: ```java import org.apache.ibatis.io.Resources; import java.io.InputStream; public class Example { public static void main(String[] args) {
recommend-type

车辆安全工作计划PPT.pptx

"车辆安全工作计划PPT.pptx" 这篇文档主要围绕车辆安全工作计划展开,涵盖了多个关键领域,旨在提升车辆安全性能,降低交通事故发生率,以及加强驾驶员的安全教育和交通设施的完善。 首先,工作目标是确保车辆结构安全。这涉及到车辆设计和材料选择,以增强车辆的结构强度和耐久性,从而减少因结构问题导致的损坏和事故。同时,通过采用先进的电子控制和安全技术,提升车辆的主动和被动安全性能,例如防抱死刹车系统(ABS)、电子稳定程序(ESP)等,可以显著提高行驶安全性。 其次,工作内容强调了建立和完善车辆安全管理体系。这包括制定车辆安全管理制度,明确各级安全管理责任,以及确立安全管理的指导思想和基本原则。同时,需要建立安全管理体系,涵盖安全组织、安全制度、安全培训和安全检查等,确保安全管理工作的系统性和规范性。 再者,加强驾驶员安全培训是另一项重要任务。通过培训提高驾驶员的安全意识和技能水平,使他们更加重视安全行车,了解并遵守交通规则。培训内容不仅包括交通法规,还涉及安全驾驶技能和应急处置能力,以应对可能发生的突发情况。 此外,文档还提到了严格遵守交通规则的重要性。这需要通过宣传和执法来强化,以降低由于违反交通规则造成的交通事故。同时,优化道路交通设施,如改善交通标志、标线和信号灯,可以提高道路通行效率,进一步增强道路安全性。 在实际操作层面,工作计划中提到了车辆定期检查的必要性,包括对刹车、转向、悬挂、灯光、燃油和电器系统的检查,以及根据车辆使用情况制定检查计划。每次检查后应记录问题并及时处理,以确保车辆始终处于良好状态。 最后,建立车辆安全信息管理系统也是关键。通过对车辆事故和故障情况进行记录和分析,可以为安全管理提供数据支持,以便及时发现问题,预防潜在风险,并对事故进行有效处理和责任追究。 这份车辆安全工作计划全面覆盖了从车辆本身到驾驶员行为,再到道路环境的诸多方面,旨在构建一个全方位、多层次的车辆安全管理体系,以降低交通事故风险,保障道路交通安全。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB图像去噪行业应用:从医疗到遥感,解锁图像去噪的无限潜力

![MATLAB图像去噪行业应用:从医疗到遥感,解锁图像去噪的无限潜力](https://img-blog.csdnimg.cn/img_convert/3aa5d0402a313c17c3c9ffa85b40f683.png) # 1. MATLAB图像去噪概述 **1.1 图像去噪的重要性** 图像去噪是图像处理中一项至关重要的任务,它旨在从图像中去除不需要的噪声,从而提高图像的质量和可理解性。图像噪声可能来自各种来源,如传感器缺陷、环境干扰和数据传输错误。 **1.2 MATLAB图像去噪的优势** MATLAB是一个强大的技术计算环境,提供了一系列图像去噪算法和工具。MATLA