请用python语言、A*算法求解八数码问题,要求启发函数使用不在为数、将牌“不在位”的距离和两种方法,输出初始状态、目标状态、最优解、扩展节点数(不包括叶子节点)、生成节点数(包含叶子节点)、迭代次数。其中要求最优解输出完整的状态变换过程,同时state不能出现不可hash的错误。

时间: 2023-05-31 12:04:44 浏览: 125
由于题目中要求使用A*算法,我们需要定义一个估价函数(启发函数)来衡量当前节点到达目标节点的距离。在八数码问题中,我们可以使用不在位的牌数或不在位的牌的距离作为启发函数。 我们可以定义一个Node类来表示每个搜索节点,包括当前状态、父节点、深度、估价函数值等信息。我们使用一个set类型的closedList来记录已经搜索过的节点,使用一个优先队列openList(使用heapq实现)来记录待扩展的节点,按照节点的估价函数值从小到大排序。 以下是代码实现: ```python import heapq import copy class Node: def __init__(self, state, parent, depth, f, heuristic): self.state = state self.parent = parent self.depth = depth self.f = f self.heuristic = heuristic def __lt__(self, other): # 用于heapq比较大小 return self.f < other.f def print_path(node): path = [] while node: path.append(node.state) node = node.parent path.reverse() for state in path: print_state(state) def print_state(state): print(state[0], state[1], state[2]) print(state[3], state[4], state[5]) print(state[6], state[7], state[8]) print() def get_zero_index(state): return state.index(0) def swap(state, i, j): new_state = copy.deepcopy(state) new_state[i], new_state[j] = new_state[j], new_state[i] return new_state def get_successors(state): successors = [] zero_index = get_zero_index(state) if zero_index != 0 and zero_index != 3 and zero_index != 6: # 交换上面的牌 successors.append(swap(state, zero_index, zero_index - 1)) if zero_index != 2 and zero_index != 5 and zero_index != 8: # 交换下面的牌 successors.append(swap(state, zero_index, zero_index + 1)) if zero_index >= 3: # 交换上面的牌 successors.append(swap(state, zero_index, zero_index - 3)) if zero_index <= 5: # 交换下面的牌 successors.append(swap(state, zero_index, zero_index + 3)) return successors def count_misplaced_tiles(state, target): count = 0 for i in range(9): if state[i] != target[i]: count += 1 return count def manhattan_distance(state, target): distance = 0 for i in range(9): if state[i] != 0: distance += abs(i % 3 - target.index(state[i]) % 3) + abs(i // 3 - target.index(state[i]) // 3) return distance def astar(start, target, heuristic): start_node = Node(start, None, 0, 0, heuristic(start, target)) open_list = [start_node] closed_list = set() generated = 1 expanded = 0 iterations = 0 while open_list: iterations += 1 current_node = heapq.heappop(open_list) if current_node.state == target: print_path(current_node) print("Expanded nodes:", expanded) print("Generated nodes:", generated) print("Iterations:", iterations) return closed_list.add(tuple(current_node.state)) successors = get_successors(current_node.state) expanded += 1 for successor in successors: if tuple(successor) not in closed_list: successor_node = Node(successor, current_node, current_node.depth + 1, 0, heuristic(successor, target)) successor_node.f = successor_node.depth + successor_node.heuristic heapq.heappush(open_list, successor_node) generated += 1 print("No solution found") if __name__ == '__main__': start_state = [1, 2, 3, 4, 5, 6, 0, 7, 8] target_state = [1, 2, 3, 4, 5, 6, 7, 8, 0] print("Start state:") print_state(start_state) print("Target state:") print_state(target_state) print("Misplaced tiles heuristic:") astar(start_state, target_state, count_misplaced_tiles) print("Manhattan distance heuristic:") astar(start_state, target_state, manhattan_distance) ``` 我们可以先定义一个print_state函数来输出状态,然后定义一个get_zero_index函数来获取0的位置,以及一个swap函数用于交换两个位置的数。 接着定义一个get_successors函数来获取当前状态的所有后继节点,即所有可以通过一次交换0和相邻的数得到的状态。我们可以先获取0的位置,然后判断0在哪一行哪一列,然后分别判断是否可以交换上下左右的数。 接下来定义两个启发函数:count_misplaced_tiles和manhattan_distance。其中count_misplaced_tiles返回当前状态和目标状态中不在位的牌的数量,manhattan_distance返回当前状态到目标状态的曼哈顿距离。 然后定义一个Node类,用于表示每个搜索节点。其中state表示当前状态,parent表示父节点,depth表示深度,f表示f值,heuristic表示估价函数值。 最后定义一个astar函数来实现A*算法。我们使用一个set类型的closed_list来记录已经搜索过的节点,使用一个优先队列open_list(使用heapq实现)来记录待扩展的节点,按照节点的估价函数值从小到大排序。在每次循环中,我们从open_list中取出f值最小的节点进行扩展,将其加入closed_list中,并获取其所有后继节点。对于每个后继节点,如果它没有被搜索过,则将其加入open_list中,并更新其f值和估价函数值。最后如果open_list为空,则搜索失败,否则搜索成功。 最后我们在main函数中定义初始状态和目标状态,然后依次使用两个启发函数进行搜索,输出结果。
阅读全文

相关推荐

用c++完成步骤一.设计八数码格局的隐式存储的节点结构: 将表示棋局的状态用如下向量表示: A=(X0,X1 ,X2 ,X3 ,X4 ,X5 , X6 , X7 ,X8) 约束条件: XiÎ{0,1 ,2,3,4,5,6,7,8} Xi¹Xj,当i¹j时。 初始状态: S0 =(0,1,3,2,4,8,7,6,5) 目标状态: Sg =(0,1,2,3,4,5,6,7,8) 步骤二. 采用广度优先、深度优先搜索算法实现搜索。 步骤三. 设计启发函数,启发函数可参考如下定义方法: (1)启发函数h(n)定义为:h(n)=w(n) 其中,w(n)代表n的格局域目标节点格局相比,位置不符的将牌数目。 (2)估计函数f(n)定义为:f(n)=d(n)+w(n) 其中,d(n)表示节点深度,w(n)意义与前同。 (3)对w(n)进一步改进:令h(n)=P(n) 其中,p(n)是n格局中每个将牌离家(在sg中的位置)的最短距离。 (4)另一种改进:h(n)=p(n)+3s(n) 其中, s(n)是这样计算的:沿着周围哪些非中心方格上依顺时针方向检查n格局上的每一个将牌,如果其后紧跟着的将牌正好是目标格局中该将牌的后续者,则该将牌得0分,否则得2分;在正中方格上有将牌得1分,否则得0分 步骤四.选择并设计搜索算法。 (1)使用全局择优的树式搜索算法,即启发式的宽度优先搜索算法,但要考虑去掉已生成的格局。 (2)使用局部择优的树式搜索算法,即启发式的深度优先搜索算法,但要考虑去掉已生成的格局。 (3)使用A算法或A*算法,即图的启发式搜索算法,比上述两个算法略有难度。 步骤五 设计输出 动态演示格局的变化情况,即数码的移动情况。 步骤六 编写代码,调试程序。

最新推荐

recommend-type

精细金属掩模板(FMM)行业研究报告 显示技术核心部件FMM材料产业分析与市场应用

精细金属掩模板(FMM)作为OLED蒸镀工艺中的核心消耗部件,负责沉积RGB有机物质形成像素。材料由Frame、Cover等五部分组成,需满足特定热膨胀性能。制作工艺包括蚀刻、电铸等,影响FMM性能。适用于显示技术研究人员、产业分析师,旨在提供FMM材料技术发展、市场规模及产业链结构的深入解析。
recommend-type

【创新未发表】斑马算法ZOA-Kmean-Transformer-LSTM负荷预测Matlab源码 9515期.zip

CSDN海神之光上传的全部代码均可运行,亲测可用,直接替换数据即可,适合小白; 1、代码压缩包内容 主函数:Main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2024b;若运行有误,根据提示修改;若不会,可私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开除Main.m的其他m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博主博客文章底部QQ名片; 4.1 CSDN博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作 智能优化算法优化Kmean-Transformer-LSTM负荷预测系列程序定制或科研合作方向: 4.4.1 遗传算法GA/蚁群算法ACO优化Kmean-Transformer-LSTM负荷预测 4.4.2 粒子群算法PSO/蛙跳算法SFLA优化Kmean-Transformer-LSTM负荷预测 4.4.3 灰狼算法GWO/狼群算法WPA优化Kmean-Transformer-LSTM负荷预测 4.4.4 鲸鱼算法WOA/麻雀算法SSA优化Kmean-Transformer-LSTM负荷预测 4.4.5 萤火虫算法FA/差分算法DE优化Kmean-Transformer-LSTM负荷预测 4.4.6 其他优化算法优化Kmean-Transformer-LSTM负荷预测
recommend-type

j link 修复问题套件

j link 修复问题套件
recommend-type

Angular实现MarcHayek简历展示应用教程

资源摘要信息:"MarcHayek-CV:我的简历的Angular应用" Angular 应用是一个基于Angular框架开发的前端应用程序。Angular是一个由谷歌(Google)维护和开发的开源前端框架,它使用TypeScript作为主要编程语言,并且是单页面应用程序(SPA)的优秀解决方案。该应用不仅展示了Marc Hayek的个人简历,而且还介绍了如何在本地环境中设置和配置该Angular项目。 知识点详细说明: 1. Angular 应用程序设置: - Angular 应用程序通常依赖于Node.js运行环境,因此首先需要全局安装Node.js包管理器npm。 - 在本案例中,通过npm安装了两个开发工具:bower和gulp。bower是一个前端包管理器,用于管理项目依赖,而gulp则是一个自动化构建工具,用于处理如压缩、编译、单元测试等任务。 2. 本地环境安装步骤: - 安装命令`npm install -g bower`和`npm install --global gulp`用来全局安装这两个工具。 - 使用git命令克隆远程仓库到本地服务器。支持使用SSH方式(`***:marc-hayek/MarcHayek-CV.git`)和HTTPS方式(需要替换为具体用户名,如`git clone ***`)。 3. 配置流程: - 在server文件夹中的config.json文件里,需要添加用户的电子邮件和密码,以便该应用能够通过内置的联系功能发送信息给Marc Hayek。 - 如果想要在本地服务器上运行该应用程序,则需要根据不同的环境配置(开发环境或生产环境)修改config.json文件中的“baseURL”选项。具体而言,开发环境下通常设置为“../build”,生产环境下设置为“../bin”。 4. 使用的技术栈: - JavaScript:虽然没有直接提到,但是由于Angular框架主要是用JavaScript来编写的,因此这是必须理解的核心技术之一。 - TypeScript:Angular使用TypeScript作为开发语言,它是JavaScript的一个超集,添加了静态类型检查等功能。 - Node.js和npm:用于运行JavaScript代码以及管理JavaScript项目的依赖。 - Git:版本控制系统,用于代码的版本管理及协作开发。 5. 关于项目结构: - 该应用的项目文件夹结构可能遵循Angular CLI的典型结构,包含了如下目录:app(存放应用组件)、assets(存放静态资源如图片、样式表等)、environments(存放环境配置文件)、server(存放服务器配置文件如上文的config.json)等。 6. 开发和构建流程: - 开发时,可能会使用Angular CLI来快速生成组件、服务等,并利用热重载等特性进行实时开发。 - 构建应用时,通过gulp等构建工具可以进行代码压缩、ES6转译、单元测试等自动化任务,以确保代码的质量和性能优化。 7. 部署: - 项目最终需要部署到服务器上,配置文件中的“baseURL”选项指明了服务器上的资源基础路径。 8. 关于Git仓库: - 压缩包子文件的名称为MarcHayek-CV-master,表明这是一个使用Git版本控制的仓库,且存在一个名为master的分支,这通常是项目的主分支。 以上知识点围绕Angular应用“MarcHayek-CV:我的简历”的创建、配置、开发、构建及部署流程进行了详细说明,涉及了前端开发中常见的工具、技术及工作流。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

深入剖析:内存溢出背后的原因、预防及应急策略(专家版)

![深入剖析:内存溢出背后的原因、预防及应急策略(专家版)](https://d8it4huxumps7.cloudfront.net/uploads/images/65e82a01a4196_dangling_pointer_in_c_2.jpg?d=2000x2000) 参考资源链接:[Net 内存溢出(System.OutOfMemoryException)的常见情况和处理方式总结](https://wenku.csdn.net/doc/6412b784be7fbd1778d4a95f?spm=1055.2635.3001.10343) # 1. 内存溢出的概念及影响 内存溢出,又称
recommend-type

Java中如何对年月日时分秒的日期字符串作如下处理:如何日期分钟介于两个相连的半点之间,就将分钟数调整为前半点

在Java中,你可以使用`java.time`包中的类来处理日期和时间,包括格式化和调整。下面是一个示例,展示了如何根据给定的日期字符串(假设格式为"yyyy-MM-dd HH:mm:ss")进行这样的处理: ```java import java.text.SimpleDateFormat; import java.time.LocalDateTime; import java.time.ZoneId; import java.time.ZonedDateTime; public class Main { public static void main(String[] args
recommend-type

Crossbow Spot最新更新 - 获取Chrome扩展新闻

资源摘要信息:"Crossbow Spot - Latest News Update-crx插件" 该信息是关于一款特定的Google Chrome浏览器扩展程序,名为"Crossbow Spot - Latest News Update"。此插件的目的是帮助用户第一时间获取最新的Crossbow Spot相关信息,它作为一个RSS阅读器,自动聚合并展示Crossbow Spot的最新新闻内容。 从描述中可以提取以下关键知识点: 1. 功能概述: - 扩展程序能让用户领先一步了解Crossbow Spot的最新消息,提供实时更新。 - 它支持自动更新功能,用户不必手动点击即可刷新获取最新资讯。 - 用户界面设计灵活,具有美观的新闻小部件,使得信息的展现既实用又吸引人。 2. 用户体验: - 桌面通知功能,通过Chrome的新通知中心托盘进行实时推送,确保用户不会错过任何重要新闻。 - 提供一个便捷的方式来保持与Crossbow Spot最新动态的同步。 3. 语言支持: - 该插件目前仅支持英语,但开发者已经计划在未来的版本中添加对其他语言的支持。 4. 技术实现: - 此扩展程序是基于RSS Feed实现的,即从Crossbow Spot的RSS源中提取最新新闻。 - 扩展程序利用了Chrome的通知API,以及RSS Feed处理机制来实现新闻的即时推送和展示。 5. 版权与免责声明: - 所有的新闻内容都是通过RSS Feed聚合而来,扩展程序本身不提供原创内容。 - 用户在使用插件时应遵守相关的版权和隐私政策。 6. 安装与使用: - 用户需要从Chrome网上应用店下载.crx格式的插件文件,即Crossbow_Spot_-_Latest_News_Update.crx。 - 安装后,插件会自动运行,并且用户可以对其进行配置以满足个人偏好。 从以上信息可以看出,该扩展程序为那些对Crossbow Spot感兴趣或需要密切跟进其更新的用户提供了一个便捷的解决方案,通过集成RSS源和Chrome通知机制,使得信息获取变得更加高效和及时。这对于需要实时更新信息的用户而言,具有一定的实用价值。同时,插件的未来发展计划中包括了多语言支持,这将使得更多的用户能够使用并从中受益。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【Java内存管理终极指南】:一次性解决内存溢出、泄漏和性能瓶颈

![【Java内存管理终极指南】:一次性解决内存溢出、泄漏和性能瓶颈](https://community.cloudera.com/t5/image/serverpage/image-id/31614iEBC942A7C6D4A6A1/image-size/large?v=v2&px=999) 参考资源链接:[Net 内存溢出(System.OutOfMemoryException)的常见情况和处理方式总结](https://wenku.csdn.net/doc/6412b784be7fbd1778d4a95f?spm=1055.2635.3001.10343) # 1. Java内存模型