设计函数分别求两个一元多项式的乘积与和。 输入格式: 输入分2行,每行分别先给出多项式非零项的个数,再以指数递降方式输入一个多项式非零项系数和指数(绝对值均为不超过1000的整数)。数字间以空格分隔。

时间: 2023-05-31 21:20:47 浏览: 679
### 回答1: 这道题需要你实现一个函数,分别求两个一元多项式的乘积和和。输入的格式是,首先输入一行,每行是一个一元多项式(需要以数组的形式输入),数组中的元素表示不同的项,依次为常数、一次项的系数、二次项的系数……以此类推。注意,如果这个多项式中某次项的系数为零,则这一项便可省略。 其次,输入一个正整数,表示上述一元多项式的个数。 如果出现了多项式中的非零项系数与指数值都为 0 的情况(即类似于 0x^0,0x1^0 等),需要将其直接视为 0 处理。 最终的答案(即乘积和以及和)需要分别输出,并以空格作为分隔符进行分割。 ### 回答2: 题目描述 设计函数分别求两个一元多项式的乘积与和。 输入格式 输入分2行,每行分别先给出多项式非零项的个数,再以指数递降方式输入一个多项式非零项系数和指数(绝对值均为不超过1000的整数)。数字间以空格分隔。 输出格式 输出分2行,分别以指数递降方式输出乘积多项式与和多项式。注意“零多项式”的指数和系数都是0,但是表示为0 0。 输入样例 2 1 2.4 -3 5 2 2 4.1 3 2 输出样例 3 7 12.4 -3 5 3 2 4.1 -3 5 0 0 算法分析 题目给出了两个多项式,要求我们分别求出它们的乘积和和。这里的关键点在于如何设计函数来实现这一功能。 对于这种题目,我们可以设计一个结构体来存储多项式,使其更加清晰。由于题目所给出的多项式是以指数递降方式输入,因此我们可以使用数组来存储这些多项式。具体来说,每个多项式可以表示为一个数组,数组中的每个元素都是一个结构体,包含了系数和指数。 在实现乘积和和的函数时,我们可以遍历两个多项式中的每一项,并用套公式的方法计算乘积和和。最后再输出结果即可。 C++代码 ### 回答3: 这道题需要设计两个函数,一个用来求两个一元多项式的乘积,一个用来求两个一元多项式的和。 首先,要考虑到多项式的表示方法。我们可以用一个二元组来表示多项式的某一项,例如 (a, b) 表示系数为 a,指数为 b 的项。那么一个多项式就可以表示成一个元素为二元组的列表,例如 [(2, 3), (5, 2), (1, 0)] 表示 2x^3 + 5x^2 + 1。 接下来,就是函数的设计。先看乘积函数。我们可以这样做: 1. 定义两个列表 Pa 和 Pb,分别表示两个输入的多项式。 2. 新建一个空列表 res,用来存储乘积多项式的每一项。 3. 对于 Pa 中的每一项 (a, i),和 Pb 中的每一项 (b, j),计算它们的乘积 (a*b, i+j)。将这些乘积项加入 res 列表中。 4. 最后,对 res 中的所有项按照指数从高到低排序,并合并同类项。这样得到的就是两个多项式的乘积。 下面是乘积函数的 Python 代码: ``` def multiply_poly(): n1 = int(input()) # 第一个多项式的非零项数 p1 = [tuple(map(int, input().split())) for _ in range(n1)] # 第一个多项式的系数和指数 n2 = int(input()) # 第二个多项式的非零项数 p2 = [tuple(map(int, input().split())) for _ in range(n2)] # 第二个多项式的系数和指数 res = [] for coef1, exp1 in p1: for coef2, exp2 in p2: coef = coef1 * coef2 exp = exp1 + exp2 res.append((coef, exp)) res = sorted(res, key=lambda x: -x[1]) # 按照指数从高到低排序 ans = [] for exp, group in itertools.groupby(res, lambda x: x[1]): # 合并同类项 coef = sum(x[0] for x in group) ans.append((coef, exp)) ans = [(c, e) for c, e in ans if c != 0] # 去掉系数为 0 的项 if not ans: # 如果结果多项式为 0,则只输出 1 个 0 print("0 0") else: print(len(ans), end="") for coef, exp in ans: print(" {} {}".format(coef, exp), end="") print() ``` 接下来看和函数。我们可以这样做: 1. 定义两个列表 Pa 和 Pb,分别表示两个输入的多项式。 2. 新建一个空列表 res,用来存储和多项式的每一项。 3. 用两个指针 i 和 j 分别指向 Pa 和 Pb 的第一项,比较它们的指数大小。如果相等,将这两项的系数相加。如果不相等,则将指数较小的那一项加入 res。重复这个过程,直到某个指针到达列表末尾。 4. 如果一个多项式已经遍历完了,将另一个多项式的剩余项加入 res。 5. 最后,对 res 中的所有项按照指数从高到低排序,并合并同类项。这样得到的就是两个多项式的和。 下面是和函数的 Python 代码: ``` def add_poly(): n1 = int(input()) # 第一个多项式的非零项数 p1 = [tuple(map(int, input().split())) for _ in range(n1)] # 第一个多项式的系数和指数 n2 = int(input()) # 第二个多项式的非零项数 p2 = [tuple(map(int, input().split())) for _ in range(n2)] # 第二个多项式的系数和指数 res = [] i, j = 0, 0 while i < n1 and j < n2: coef1, exp1 = p1[i] coef2, exp2 = p2[j] if exp1 == exp2: coef = coef1 + coef2 exp = exp1 i += 1 j += 1 elif exp1 > exp2: coef = coef1 exp = exp1 i += 1 else: coef = coef2 exp = exp2 j += 1 res.append((coef, exp)) while i < n1: # 如果一个多项式已经遍历完了,将另一个多项式的剩余项加入 res coef, exp = p1[i] res.append((coef, exp)) i += 1 while j < n2: coef, exp = p2[j] res.append((coef, exp)) j += 1 res = sorted(res, key=lambda x: -x[1]) # 按照指数从高到低排序 ans = [] for exp, group in itertools.groupby(res, lambda x: x[1]): # 合并同类项 coef = sum(x[0] for x in group) ans.append((coef, exp)) ans = [(c, e) for c, e in ans if c != 0] # 去掉系数为 0 的项 if not ans: # 如果结果多项式为 0,则只输出 1 个 0 print("0 0") else: print(len(ans), end="") for coef, exp in ans: print(" {} {}".format(coef, exp), end="") print() ``` 以上就是两个函数的详细设计和实现步骤。完整代码可以在下面找到。
阅读全文

相关推荐

最新推荐

recommend-type

一元多项式乘法,功能: 完成两个n元多项式作乘法,给出明确的等式形式。

标题中的“一元多项式乘法”是指在数学中,两个一元多项式相乘得到新的多项式的过程。这个过程通常涉及到将一个多项式的每个项与另一个多项式的每个项相乘,然后将结果合并,去除相同的项并进行加法运算。在计算机...
recommend-type

一元多项式计算问题课程设计

【一元多项式计算问题课程设计】涉及到的主要知识点包括一元多项式的表示、排序、相加和相减操作,以及链表数据结构的应用。在计算机科学中,一元多项式通常用于数学运算和符号计算,这里我们将深入探讨这些概念。 ...
recommend-type

一元稀疏多项式设计-数据结构课程设计

例如,`CreatPoly`函数负责创建多项式链表,`AddPoly`函数计算两个多项式的和,`SubPoly`函数计算差,`MulPoly`计算乘积,`DeriPoly`计算导数,`DisplayPoly`显示多项式。 在详细设计阶段,我们需要为每个函数编写...
recommend-type

基于freeRTOS和STM32F103x的手机远程控制浴室温度系统设计源码

该项目是一款基于freeRTOS操作系统和STM32F103x微控制器的手机远程控制浴室温度系统设计源码,共包含1087个文件,包括580个C语言源文件、269个头文件、45个汇编源文件、36个数据文件、36个目标文件、35个编译规则文件、28个包含文件、27个文本文件、6个源文件、3个归档文件。此系统通过手机远程实现对浴室温度的有效控制,适用于智能浴室环境管理。
recommend-type

Windows平台下的Fastboot工具使用指南

资源摘要信息:"Windows Fastboot.zip是一个包含了Windows环境下使用的Fastboot工具的压缩文件。Fastboot是一种在Android设备上使用的诊断和工程工具,它允许用户通过USB连接在设备的bootloader模式下与设备通信,从而可以对设备进行刷机、解锁bootloader、安装恢复模式等多种操作。该工具是Android开发者和高级用户在进行Android设备维护或开发时不可或缺的工具之一。" 知识点详细说明: 1. Fastboot工具定义: Fastboot是一种与Android设备进行交互的命令行工具,通常在设备的bootloader模式下使用,这个模式允许用户直接通过USB向设备传输镜像文件以及其他重要的设备分区信息。它支持多种操作,如刷写分区、读取设备信息、擦除分区等。 2. 使用环境: Fastboot工具原本是Google为Android Open Source Project(AOSP)提供的一个组成部分,因此它通常在Linux或Mac环境下更为原生。但由于Windows系统的普及性,许多开发者和用户需要在Windows环境下操作,因此存在专门为Windows系统定制的Fastboot版本。 3. Fastboot工具的获取与安装: 用户可以通过下载Android SDK平台工具(Platform-Tools)的方式获取Fastboot工具,这是Google官方提供的一个包含了Fastboot、ADB(Android Debug Bridge)等多种工具的集合包。安装时只需要解压到任意目录下,然后将该目录添加到系统环境变量Path中,便可以在任何位置使用Fastboot命令。 4. Fastboot的使用: 要使用Fastboot工具,用户首先需要确保设备已经进入bootloader模式。进入该模式的方法因设备而异,通常是通过组合特定的按键或者使用特定的命令来实现。之后,用户通过运行命令提示符或PowerShell来输入Fastboot命令与设备进行交互。常见的命令包括: - fastboot devices:列出连接的设备。 - fastboot flash [partition] [filename]:将文件刷写到指定分区。 - fastboot getvar [variable]:获取指定变量的值。 - fastboot reboot:重启设备。 - fastboot unlock:解锁bootloader,使得设备能够刷写非官方ROM。 5. Fastboot工具的应用场景: - 设备的系统更新或刷机。 - 刷入自定义恢复(如TWRP)。 - 在开发阶段对设备进行调试。 - 解锁设备的bootloader,以获取更多的自定义权限。 - 修复设备,例如清除用户数据分区或刷写新的boot分区。 - 加入特定的内核或修改系统分区。 6. 注意事项: 在使用Fastboot工具时需要格外小心,错误的操作可能会导致设备变砖或丢失重要数据。务必保证操作前已备份重要数据,并确保下载和刷入的固件是针对相应设备的正确版本。此外,不同的设备可能需要特定的驱动程序支持,因此在使用Fastboot之前还需要安装相应的USB驱动。 7. 压缩包文件说明: 资源中提到的"windows-fastboot.zip"是一个压缩文件,解压后应当包含一个或多个可执行文件、库文件等,这些文件合起来组成了Fastboot工具的Windows版本。解压后,用户应当参考解压后的文档或说明文件来进行安装和配置,以便能够正确地使用该工具。 总结而言,Fastboot作为一个功能强大的工具,它为Android设备的开发者和高级用户提供了一个界面简洁但功能全面的操作平台,以实现对设备深层次的控制。然而,它的使用要求用户具备一定的技术知识和经验,否则不当操作可能导致设备损坏。因此,使用Fastboot时应当谨慎并确保自己了解每个命令的具体含义和后果。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

DLMS规约深度剖析:从基础到电力通信标准的全面掌握

![DLMS规约基础介绍](https://afteracademy.com/images/what-is-data-model-in-dbms-and-what-are-its-types-hierarchical-model-48add64778fd4b8f.jpg) # 摘要 DLMS/COSEM是一种广泛应用于智能电网和电力计量领域的通信协议。本文首先介绍了DLMS规约的基础概念、起源以及核心技术原理,包括协议架构、数据模型、通信过程、数据封装与传输机制。随后,文章探讨了DLMS规约在电力通信中的实际应用,如智能电表和电网自动化系统的数据通信,并分析了DLMS规约的测试与验证方法。文
recommend-type

修改代码,使其正确运行

要使提供的代码能够正确运行,需要解决以下几个关键点: 1. **输入处理**:确保从控制台读取的文法规则和待解析字符串格式正确。 2. **FIRST集和FOLLOW集计算**:确保FIRST集和FOLLOW集的计算逻辑正确无误。 3. **预测分析表构建**:确保预测分析表的构建逻辑正确,并且能够处理所有可能的情况。 4. **LL(1)分析器**:确保LL(1)分析器能够正确解析输入字符串并输出解析过程。 以下是经过修改后的完整代码: ```java package com.example.demo10; import java.util.*; public class Main
recommend-type

Python机器学习基础入门与项目实践

资源摘要信息:"机器学习概述与Python在机器学习中的应用" 机器学习是人工智能的一个分支,它让计算机能够通过大量的数据学习来自动寻找规律,并据此进行预测或决策。机器学习的核心是建立一个能够从数据中学习的模型,该模型能够在未知数据上做出准确预测。这一过程通常涉及到数据的预处理、特征选择、模型训练、验证、测试和部署。 机器学习方法主要可以分为监督学习、无监督学习、半监督学习和强化学习。 监督学习涉及标记好的训练数据,其目的是让模型学会从输入到输出的映射。在这个过程中,模型学习根据输入数据推断出正确的输出值。常见的监督学习算法包括线性回归、逻辑回归、支持向量机(SVM)、决策树、随机森林和神经网络等。 无监督学习则是处理未标记的数据,其目的是探索数据中的结构。无监督学习算法试图找到数据中的隐藏模式或内在结构。常见的无监督学习算法包括聚类、主成分分析(PCA)、关联规则学习等。 半监督学习和强化学习则是介于监督学习和无监督学习之间的方法。半监督学习使用大量未标记的数据和少量标记数据进行学习,而强化学习则是通过与环境的交互来学习如何做出决策。 Python作为一门高级编程语言,在机器学习领域中扮演了非常重要的角色。Python之所以受到机器学习研究者和从业者的青睐,主要是因为其丰富的库和框架、简洁易读的语法以及强大的社区支持。 在Python的机器学习生态系统中,有几个非常重要的库: 1. NumPy:提供高性能的多维数组对象,以及处理数组的工具。 2. Pandas:一个强大的数据分析和操作工具库,提供DataFrame等数据结构,能够方便地进行数据清洗和预处理。 3. Matplotlib:一个用于创建静态、动态和交互式可视化的库,常用于生成图表和数据可视化。 4. Scikit-learn:一个简单且高效的工具,用于数据挖掘和数据分析,支持多种分类、回归、聚类算法等。 5. TensorFlow:由Google开发的开源机器学习库,适用于大规模的数值计算,尤其擅长于构建和训练深度学习模型。 6. Keras:一个高层神经网络API,能够使用TensorFlow、CNTK或Theano作为其后端进行计算。 机器学习的典型工作流程包括数据收集、数据预处理、特征工程、模型选择、训练、评估和部署。在这一流程中,Python可以贯穿始终,从数据采集到模型部署,Python都能提供强大的支持。 由于机器学习的复杂性,一个成功的机器学习项目往往需要跨学科的知识,包括统计学、数学、计算机科学、数据分析等领域。因此,掌握Python及其相关库的使用只是机器学习工作的一部分,还需要有扎实的理论基础和实践经验。 总结来说,机器学习是一个涉及数据挖掘、统计分析、算法优化等多个领域的综合性科学。Python由于其简洁的语法、丰富的库支持和强大的社区力量,成为了进行机器学习研究和应用开发的首选语言。随着技术的不断进步和算法的持续优化,机器学习的应用领域也在不断扩大,从早期的搜索引擎、推荐系统到现代的自动驾驶、医疗诊断等领域都有着广泛的应用。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依