python pandas 读取Excel 时间变成数字
时间: 2023-08-15 09:13:33 浏览: 315
python pandas 读取excel数据
在读取Excel文件时,如果时间列的格式不是Python所支持的日期时间格式,那么Pandas会将其解析为数字。为了将这些数字转换回日期时间格式,你可以使用Pandas的`to_datetime`函数。以下是具体步骤:
1. 读取Excel文件,将数据存储在一个DataFrame中:
```python
import pandas as pd
df = pd.read_excel('data.xlsx')
```
2. 使用`to_datetime`函数将时间列转换为日期时间格式:
```python
df['time'] = pd.to_datetime(df['time'], unit='s') # 如果是Unix时间戳
# 或者
df['time'] = pd.to_datetime(df['time'], format='%Y-%m-%d %H:%M:%S') # 如果是字符串格式
```
在上面的代码中,`to_datetime`函数的第一个参数是时间列的数据,第二个参数是时间的格式或单位(如果是Unix时间戳)。在本例中,我们使用的是Unix时间戳,因此我们使用`unit='s'`指定单位为秒。
3. 现在,时间列已经被转换为日期时间格式,可以使用Pandas的日期时间函数对其进行操作:
```python
df['hour'] = df['time'].dt.hour # 获取小时数
df['weekday'] = df['time'].dt.weekday_name # 获取星期几
```
以上是将Excel中的时间列转换为日期时间格式并使用Pandas的日期时间函数操作的基本步骤。你可以根据自己的需要进行调整和扩展。
阅读全文