numpy 编写逻辑回归算法对 iris 数据进行多分类
时间: 2023-06-29 13:12:55 浏览: 90
好的,让我来回答你的问题。
首先,需要导入需要用到的库,包括:
```python
import numpy as np
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
```
然后,我们需要加载 iris 数据集,并对数据进行预处理:
```python
iris = load_iris()
X = iris.data
y = iris.target
y = y.reshape(-1, 1)
# 对 y 进行 one-hot 编码
m = len(y)
n = np.max(y) + 1
y_one_hot = np.zeros((m, n))
y_one_hot[np.arange(m), y.reshape(-1)] = 1
```
接下来,我们需要定义逻辑回归模型:
```python
class LogisticRegression:
def __init__(self, input_dim, output_dim, lr=0.01):
self.W = np.zeros((input_dim, output_dim))
self.b = np.zeros((1, output_dim))
self.lr = lr
def sigmoid(self, z):
return 1 / (1 + np.exp(-z))
def forward(self, X):
z = np.dot(X, self.W) + self.b
a = self.sigmoid(z)
return a
def backward(self, X, y, a):
m = X.shape[0]
dz = a - y
dW = np.dot(X.T, dz) / m
db = np.sum(dz, axis=0, keepdims=True) / m
return dW, db
def update(self, dW, db):
self.W = self.W - self.lr * dW
self.b = self.b - self.lr * db
def train(self, X, y, num_iters):
for i in range(num_iters):
a = self.forward(X)
dW, db = self.backward(X, y, a)
self.update(dW, db)
```
然后,我们需要将数据集分为训练集和测试集:
```python
X_train, X_test, y_train, y_test = train_test_split(X, y_one_hot, test_size=0.2)
```
接下来,我们需要训练模型:
```python
input_dim = X_train.shape[1]
output_dim = y_train.shape[1]
lr = 0.1
num_iters = 1000
model = LogisticRegression(input_dim, output_dim, lr)
model.train(X_train, y_train, num_iters)
```
最后,我们需要评估模型的准确率:
```python
y_pred = model.forward(X_test)
correct = 0
total = y_test.shape[0]
for i in range(total):
if np.argmax(y_pred[i]) == np.argmax(y_test[i]):
correct += 1
accuracy = correct / total
print("Accuracy:", accuracy)
```
以上就是使用 numpy 编写逻辑回归算法对 iris 数据进行多分类的完整代码。
阅读全文