假设图采用领接矩阵存储。修改Dijkstra算法,仅求从顶点u到顶点v的最短路径及其长度

时间: 2024-05-20 18:18:08 浏览: 110
对于这个问题,我可以回答。假设图采用领接矩阵存储方式,可以用Dijkstra算法来求解从顶点u到顶点v的最短路径及其长度。首先,初始化dis数组,将源点u到每个点的距离都初始化为无穷大,源点u到它自己的距离设置为0。然后,遍历所有点,找到离源点u最近的点k,并将该点加入到已找到的最短路径的集合S中。接着,更新源点u到其它点的距离,如果从源点u到点k再到某个点w的距离小于从源点u直接到该点的距离,则更新dis[w]的值。重复以上步骤,直到找到终点v或是找遍所有点。最终得到从源点u到终点v的最短路径及其长度。
相关问题

使用Dijkstra算法求下图顶点a到顶点h的最短路径。说明Dijkstra算法的主要思路,并给出具体解题步骤、最短路径及最短路径长度。

Dijkstra算法是一种用于解决单源最短路径问题的贪心算法,它在给定加权无向图中找到从一个指定节点(在这个例子中是顶点a)到其他所有节点的最短路径。下面是Dijkstra算法的主要思路和具体步骤: 1. **主要思路**: - Dijkstra算法维护一个优先队列(通常使用最小堆),其中存储了每个顶点及其到起始顶点的距离。初始状态下,只有起点a的距离为0,其余顶点距离为无穷大。 - 每次从优先队列中选择当前距离最小的未访问顶点u,然后更新其相邻顶点v的距离,如果通过u可以到达v且新的距离更小,就更新v的距离并调整其在优先队列中的位置。 - 这个过程一直持续到优先队列为空,或者找到了目标顶点h。 2. **具体解题步骤**: - 初始化:创建一个集合S,包含顶点a,同时初始化一个距离数组dist,将所有顶点的距离设为无穷大,除了a设为0。创建一个优先队列Q,插入(a, dist[a])。 - 主循环: a) 弹出优先队列中的当前最短距离的顶点u。 b) 遍历u的所有邻居v,计算从a到v的新距离(dist[u] + u到v的边的权重)。如果新距离小于之前的dist[v],则更新dist[v]和v在队列中的位置。 - 当找到顶点h或队列为空时,算法结束。 3. **结果**: - 最终得到的距离数组dist中,dist[h]就是从顶点a到顶点h的最短路径长度。 - 如果找到h,记录下来的路径是从a出发经过一系列顶点(按照它们首次被添加到dist数组时的顺序),直到h。 由于这是一个图形表示的问题,实际的数据和边权重需要提供才能应用Dijkstra算法进行计算。不过,以上描述的是算法的一般流程。如果你有具体的邻接矩阵或邻接表,我可以帮助你分析具体步骤。

假设一个带权图G采用邻接矩阵存储。设计一个算法采用狄克斯特拉算法思路求顶点s到顶点t的最短路径长度(假设顶点s和t都是G中的顶点)。

要使用狄克斯特拉(Dijkstra's Algorithm)在邻接矩阵表示的带权图中找到从顶点 `s` 到顶点 `t` 的最短路径长度,你可以按照以下步骤进行: 1. 初始化: - 创建一个大小为图中顶点数的数组或vector `dist`,用于存放每个顶点到起始顶点 `s` 的最短距离,默认值初始化为无穷大(除了`s`本身,设为0)。 - 创建一个布尔型数组 `visited`,标记已访问过的顶点,初始时只有 `s` 标记为 `true`。 2. 运行循环: - 设置当前未访问的最小距离节点为 `dist` 数组中最小的那个未访问节点。如果所有节点都被访问过,说明找到了最短路径,返回 `dist[t]` 作为结果。 - 对于当前节点 `u`,更新其相邻节点 `v` 的 `dist[v]` 值,如果通过 `u` 可以到达 `v` 且新路径更短,则更新 `dist[v] = dist[u] + weight(u, v)`,其中 `weight(u, v)` 是 `(u, v)` 边的权重。 - 将 `u` 标记为已访问 (`visited[u] = true`),然后移除 `u`,继续寻找下一个未访问的节点。 3. 结束后,如果没有找到直接连接 `t` 的边,但 `t` 已经被访问过,那么 `dist[t]` 就是最短路径长度;否则,说明 `t` 没有直接从 `s`可达,此时 `dist[t]` 表示没有路径。 下面是用C++实现的一个简化版本: ```cpp #include <vector> #include <limits> int dijkstra(int graph[][V], int s, int t, int V) { std::vector<int> dist(V, INT_MAX); // dist[i] is the shortest distance from source to i std::vector<bool> visited(V, false); dist[s] = 0; // distance to source is 0 visited[s] = true; for (int count = 0; count < V - 1 && !visited[t]; ++count) { int u = min_distance(dist, visited); visited[u] = true; for (int v = 0; v < V; ++v) if (!visited[v] && graph[u][v] != 0 && dist[u] != INT_MAX && dist[u] + graph[u][v] < dist[v]) dist[v] = dist[u] + graph[u][v]; } return visited[t] ? dist[t] : -1; // Return -1 if no path exists } // Helper function to find minimum distance vertex in unvisited vertices int min_distance(std::vector<int>& dist, std::vector<bool>& visited) { int min_val = INT_MAX; int min_index = -1; for (int i = 0; i < dist.size(); ++i) if (!visited[i] && dist[i] < min_val) min_val = dist[i], min_index = i; return min_index; } ``` 在这个代码中,`graph` 是邻接矩阵,`V` 是顶点数量,`s` 和 `t` 分别是起点和终点。注意这个实现假设所有边都是非负权重,如果你的图中可能有负权重,你需要处理这种情况,比如使用Bellman-Ford算法。
阅读全文

相关推荐

大家在看

recommend-type

天风证券_0305_风险预算与组合优化.pdf

天风证券_0305_风险预算与组合优化.pdf
recommend-type

CST画旋转体.pdf

在CST帮助文档中很难找到画旋转体的实例,对于一些要求画旋转体模型的场合有时回感到一筹莫展,例如要对一个要承受压力的椭球封盖的腔体建模用 普通的方法就难以胜任。本文将以实例的方式教大家怎么画旋转体,很实用!
recommend-type

Universal Extractor Download [Window 10,7,8]-crx插件

语言:English (United States) Universal Extractor免费下载。 Universal Extractor最新版本:从任何类型的存档中提取文件。 [窗口10、7、8] Download Universal Extractor是一个完全按照其说的做的程序:从任何类型的存档中提取文件,无论是简单的zip文件,安装程序(例如Wise或NSIS),甚至是Windows Installer(.msi)软件包。 application此应用程序并非旨在用作通用存档程序。 它永远不会替代WinRAR,7-Zip等。它的作用是使您可以从几乎任何类型的存档中提取文件,而不论其来源,压缩方法等如何。该项目的最初动机是创建一个简单的,从安装包(例如Inno Setup或Windows Installer包)中提取文件的便捷方法,而无需每次都拉出命令行。 send我们发送和接收不同的文件,最好的方法之一是创建档案以减小文件大小,并仅发送一个文件,而不发送多个文件。 该软件旨在从使用WinRAR,WinZip,7 ZIP等流行程序创建的档案中打开或提取文件。 该程序无法创建新
recommend-type

115转存助手ui优化版3.9.1网友魔改-转存提取全修复-user

115转存助手ui优化版3.9.1网友魔改_转存提取全修复_user
recommend-type

housing:东京房价和地价

这是什么? 日本的土地价格,基于 MLIT 的数据。 报告

最新推荐

recommend-type

C++求所有顶点之间的最短路径(用Dijkstra算法)

Dijkstra算法是一种常用的最短路径算法,用于计算图中从一个顶点到所有其他顶点的最短路径。该算法的主要思想是,通过维护一个优先队列,逐步扩展图中的顶点,直到所有顶点都被访问过为止。 2. C++实现Dijkstra算法...
recommend-type

C++用Dijkstra(迪杰斯特拉)算法求最短路径

总之,Dijkstra算法在C++中实现的关键在于正确地存储图的结构,初始化和更新最短路径估计,以及有效地找到未处理顶点中的最近顶点。它在许多实际问题中都有广泛的应用,如路由规划、网络流量优化等。
recommend-type

试设计一个算法,求图中一个源点到其他各顶点的最短路径

3. 设计实现:采用 arrays 存储从源点到其他顶点的最短路径长度和路径信息,并使用冒泡排序法排序输出。 4. 输出结果:使用递归函数输出最短路径信息。 知识点5:实现细节 在实现中,我们使用了数组dist[j]来存放...
recommend-type

Dijkstra算法最短路径的C++实现与输出路径

Dijkstra算法的主要思想是通过维护一个距离数组d来记录从源点到其他顶点的最短路径长度。当算法开始时,初始化d数组为Infinity,表示从源点到其他顶点的距离为无穷大。然后,算法通过反复选择当前最短路径的下一个...
recommend-type

最短路径算法—Dijkstra(迪杰斯特拉)算法分析与实现(CC++)

在C/C++中,Dijkstra算法的实现通常涉及一个二维数组c表示图的边权重,以及一维数组dist和prev分别存储最短路径的长度和前驱节点。在上述代码中,可以看到算法的逻辑: - 第14行的Dijkstra函数接收图的节点数n,...
recommend-type

Java实现的门面模式及其UML设计图解析

门面模式(Facade Pattern)是一种常见的软件设计模式,属于结构型模式的范畴。在Java编程中,门面模式主要用于为复杂的子系统提供一个简单的接口,客户端代码只需要与门面交互,而无需直接与子系统的众多组件打交道。通过门面模式,可以减少系统间的耦合度,增强系统的可维护性和可扩展性。 ### 标题知识点详细说明: #### 1. 设计模式之门面模式: 设计模式是软件开发中解决特定问题的一般性方案,而门面模式正是其中一种。门面模式通过提供一个统一的接口,简化了客户端对复杂系统的调用。门面对象知道哪些子系统类负责处理请求,并将客户端的请求代理给适当的子系统对象。 #### 2. Java实现: 在Java实现中,门面模式通常会涉及以下几个主要部分: - **门面(Facade)类:** 这是客户端直接调用的类,它内部会持有复杂系统各个子系统类的引用,并提供一个简洁的方法来处理客户端的请求。这些方法内部会将请求转发给相应的子系统。 - **子系统类(Subsystem):** 这些类负责处理门面所转发来的请求。子系统类可以有多个,它们通常彼此之间存在依赖关系,构成一个复杂的内部结构。 - **客户端(Client):** 客户端代码负责调用门面类的方法,而不直接与任何子系统交互。 #### 3. 类设计图: 类设计图,即UML类图,是用来描述系统中类的静态结构的图表。它包括类、接口、依赖关系、关联关系、聚合关系、组合关系等元素。在门面模式的UML类图中,会明确展示出门面类、子系统类之间的关系,以及客户端如何与门面类交互。 ### 描述知识点详细说明: #### 1. Java实现版本: 门面模式的Java实现包含创建门面类和子系统类,并定义它们之间的关系。实现时,需要确保门面类只包含必要的方法,隐藏子系统的复杂性。 #### 2. UML类设计图: 在UML类设计图中,可以看到门面类位于顶部,作为客户端和其他类之间的桥梁。子系统类位于门面类下方,它们之间可能存在多重关联。客户端位于类图的一侧,显示其如何通过门面类与子系统交互。 ### 标签知识点详细说明: #### 1. 设计模式: 设计模式是软件开发领域的一个重要概念,它为软件工程师提供了一种共通的“语言”,能够更高效地沟通关于软件设计的思路和方案。 #### 2. 门面模式: 作为设计模式中的一种,门面模式的核心思想是封装复杂系统的内部结构,为用户提供一个简单直观的接口。 ### 压缩包子文件文件名称列表: #### facade: 这个文件名暗示了文档中包含的是关于门面模式的实现和UML类图设计。在实际的开发过程中,文件名"facade"很可能会被用来命名实现门面模式的类文件,以清晰地表达该类在设计模式中的角色和功能。 总结来说,门面模式通过一个统一的门面接口简化了客户端与子系统之间的交互。在Java中,通过定义门面类和子系统类,以及它们之间的关系,可以实现门面模式。UML类图是理解门面模式结构的关键工具,而"facade"这一名称则有助于快速定位到模式实现的核心代码。掌握门面模式对于设计易于理解和维护的复杂系统有着重要意义。
recommend-type

MATLAB多线程编程终极指南:揭秘性能提升10大技巧

# 1. MATLAB多线程编程基础 MATLAB多线程编程是一个高级话题,它允许开发者利用并行计算来加速数据密集型和计算密集型任务的处理速度。在这一章中,我们首先对多线程编程的基础知识进行概览,为后续章节的深入探讨打下基础。我们从MATLAB多线程编程的含义和优势开始介绍,然后探讨它在解决实际问题
recommend-type

请用python制作一个200行左右的商品信息管理系统

为了创建一个简单的商品信息管理系统,我们可以使用Python的内置数据结构,如字典列表以及一些基本的控制流结构。这里是一个基础的示例,仅包含添加、查看和删除商品的功能,共约75行左右,因为实际项目可能会更复杂: ```python class ProductManager: def __init__(self): self.products = [] def add_product(self, product_id, name, price): item = { 'id': product_id,
recommend-type

韩国风格房地产广告模板赏析

标题和描述中提到的“韩国房地产广告模板”指的是针对韩国房地产市场设计的广告模板。这类模板通常用于房地产公司或个人在推广韩国境内房产项目时使用。它们可能包含韩国本土的建筑风格、景观特色和市场特征。由于韩国的房地产市场有其独特性,这类广告模板在设计上可能会注重以下几点: 1. 美观与现代性:韩国房地产广告往往强调美观和现代感,通过高质量的图像和布局来吸引潜在买家的注意。 2. 空间展示:在广告中会突出房产的空间布局和室内设计,让购房者能够清晰地想象居住空间。 3. 技术融入:韩国是一个技术先进的国家,因此广告模板可能会融入虚拟现实(VR)、增强现实(AR)等技术手段,以提供更加生动和互动的展示效果。 4. 文化因素:广告内容会考虑韩国的文化特点,例如对风水、方位等传统文化的尊重和融合。 5. 便捷的沟通渠道:为了方便客户了解更多信息,广告模板中通常会提供有效的联系方式,如电话、网站或二维码链接到楼盘的详细介绍页面。 描述中未提供具体的设计细节,因此无法进一步分析模板的具体内容。但是,可以推测这类模板的目的是为了帮助房地产商更有效地吸引和沟通潜在的买家群体,同时体现韩国房地产市场的特点和优势。 接下来,我们需要注意标签“韩国房地产广告模板”。在IT和市场营销领域,标签通常用于分类和检索信息。一个标签可以包含大量的相关知识点。例如,在使用“韩国房地产广告模板”这个标签时,可能涉及到以下知识点: - 韩国房地产市场概况:了解韩国房地产市场的基本状况,包括房价走势、主要的房地产开发商和市场热点地区等。 - 广告设计原则:在设计针对韩国市场的广告时,需要考虑到设计美学、版面布局、色彩搭配和图像选择等基本设计原则。 - 市场营销策略:涉及如何通过广告模板有效地推广房产项目,包括目标受众分析、推广平台选择和广告效果评估等。 - 法律法规:在韩国进行房地产广告宣传时,需要遵守当地的法律法规,比如房地产广告法、消费者保护法等。 - 数字媒体营销:鉴于“压缩包子文件的文件名称列表”中的“.url”和“易采源码下载说明.txt”文件,我们可以推测需要对数字媒体营销有所了解,这包括如何利用网络平台、社交媒体、搜索引擎优化(SEO)等手段来推广房地产广告。 综上所述,虽然给定文件信息中提供的内容有限,但我们仍可以提炼出一些基本的、与“韩国房地产广告模板”相关的核心知识点,为实现有效的房地产市场营销提供基础。
recommend-type

深入Trello API与Notion高级功能:打造定制化信息管理系统

# 1. Trello和Notion平台概述 在数字化时代,项目管理和信息组织需求日益增长。Trello和Notion,作为两款流行的工具,帮助个人和团队以不同的方式高效组织工作。本章将为您提供对这两个平台的基本了解。 ## Trello平台概述 Trello 是一个基于看板方法的项目管理工具。它以其直观的拖放界面和卡片式列表而闻名