df3 = df[4].value_counts() data_1 = df3.index.tolist() data_2 = [] for i in df3: data_2.append(i) print(data_1) print(data_2)是什么意思
时间: 2024-06-04 10:07:26 浏览: 147
这段代码是对 Pandas DataFrame 的第 4 列进行值计数,然后将计数结果的索引列表赋值给变量 `data_1`,计数结果的值列表赋值给变量 `data_2`。最后通过 `print` 函数输出 `data_1` 和 `data_2` 的值。
换句话说,这段代码的作用是统计 DataFrame 的某一列中每个值出现的次数,并将值和出现次数分别保存在两个列表中。
相关问题
import matplotlib.pyplot as plt import pandas as pd import numpy as np import tushare as ts pro = ts.pro_api('68055e3ab5b3a9b50c8fef138c44546dbd25bea5474439a22134df3d') start_date = '20180510' end_date = '20201030' code_list = ['000568.SZ', '000858.SZ', '600519.SH', '600809.SH', '002304.SZ'] for i in code_list: df = pro.daily(ts_code=i, start_date=start_date, end_date=end_date) df = df[['ts_code','trade_date','close']] df.to_csv(f'{i}.csv',encoding='gbk') df1 = pd.read_csv('000568.SZ.csv') df2 = pd.read_csv('000858.SZ.csv') df3 = pd.read_csv('600519.SH.csv') df4 = pd.read_csv('600809.SH.csv') df5 = pd.read_csv('002304.SZ.csv') df=pd.concat([df1,df2,df3,df4,df], ignore_index=True) df['trade_date'] = pd.to_datetime(df['trade_date'], format='%Y%m%d') df['close'] = df['close'].astype(float) df = df.set_index('trade_date') returns1 = df.loc[df['ts_code'] == '000568.SZ', 'close'].pct_change() returns2 = df.loc[df['ts_code'] == '000858.SZ', 'close'].pct_change() returns3 = df.loc[df['ts_code'] == '600519.SH', 'close'].pct_change() returns4 = df.loc[df['ts_code'] == '600809.SH', 'close'].pct_change() returns5 = df.loc[df['ts_code'] == '002304.SZ', 'close'].pct_change() returns = 0.32 * returns1 + 0.15 * returns2 + 0.10 * returns3 + 0.18 * returns4 + 0.25 * returns5
你的代码是用于计算不同股票的加权平均收益率的。其中,代码列表中包含了5只股票,分别是 '000568.SZ', '000858.SZ', '600519.SH', '600809.SH', '002304.SZ',每只股票的交易数据都是从 '20180510' 到 '20201030' 的。代码首先通过 tushare 库获取每只股票的交易数据,并将其保存到相应的 csv 文件中。接着,代码使用 pandas 库将这些 csv 文件读取到 DataFrame 中,并将这些 DataFrame 合并到一起。最后,代码计算了每只股票的收益率,并按照一定的权重对这些收益率进行加权平均。
import pandas as pd df=pd.read_csv('D:/20230706/sdssSpecPhoto.csv') df1=df.sort_values(by="ra",ascending=True) df2=df1.drop_duplicates(subset=['ra','dec'],keep='first',inplace=False) df3=df2.iloc[:,1:3] df3.to_csv("D:/20230706/sdss_corrdinate1.csv") df4=pd.read_csv("D:/20230706/sdss_ALLWISE.csv",index_col=0)
您已经成功导入了 Pandas 库,并使用 `pd.read_csv` 函数读取了名为 'D:/20230706/sdssSpecPhoto.csv' 的 CSV 文件,将其存储在名为 'df' 的 DataFrame 中。
接下来,您对 DataFrame 'df' 进行了排序操作,按照 'ra' 列的值进行升序排序,并将结果存储在名为 'df1' 的新 DataFrame 中。
然后,您使用 `drop_duplicates` 函数在 'df1' DataFrame 上去除了重复的行,基于 'ra' 和 'dec' 列的值进行判断,并保留第一次出现的行。这一操作的结果被存储在名为 'df2' 的新 DataFrame 中。
接着,您使用 `iloc` 方法从 'df2' DataFrame 中选取了所有行和第1、2列的数据,并将结果存储在名为 'df3' 的新 DataFrame 中。
随后,您使用 `to_csv` 方法将 'df3' DataFrame 中的数据写入到名为 'D:/20230706/sdss_corrdinate1.csv' 的 CSV 文件中。
最后,您使用 `pd.read_csv` 函数读取了名为 'D:/20230706/sdss_ALLWISE.csv' 的 CSV 文件,并将其存储在名为 'df4' 的 DataFrame 中,并将第一列作为索引列。
阅读全文