data = np.expand_dims(data, axis=0)作用
时间: 2023-08-29 08:08:17 浏览: 91
这行代码的作用是在 NumPy 数组 `data` 的第 0 维(即最外层维度)上增加一个维度,从而将其转换为一个形状为 `(1, ...) ` 的数组,其中 `...` 代表原来 `data` 的形状。这通常用于将单个数据点转换为批量数据的形式,以便将其输入到深度学习模型中进行处理。例如,如果原来的 `data` 形状为 `(N, H, W, C)`,其中 `N` 是样本数,`H`、`W`、`C` 分别是高度、宽度和通道数,那么经过这行代码后,`data` 的形状将变成 `(1, N, H, W, C)`,其中第一维是新增的,用于表示批量大小为 1。
相关问题
direction_data = np.expand_dims(direction_data, axis=0)
这行代码是将一个numpy数组的维度在第0维进行扩展,扩展后的维度为(1,原始维度)。这个操作可以用于将单个样本的数据转化为模型需要的输入格式。例如,如果一个模型需要的输入数据维度为(batch_size, seq_len, input_dim),其中batch_size表示一次输入的样本数量,seq_len表示序列长度,input_dim表示输入的特征维度。那么对于单个样本,它的维度就是(seq_len, input_dim),需要通过np.expand_dims扩展一个维度,变成(batch_size=1, seq_len, input_dim)的形式,才能作为模型的输入。
data00=data m,n = np.shape(data00) a = np.array(data00) Data00 = a[1:m,2:n] Data00 = Data00.astype(np.float64) Power = Data00[:,13] Power_train = Power[0:96] P_min = np.min(Power_train) P_gap = np.max(Power_train)-np.min(Power_train) Power_uni = (Power-P_min)/P_gap # 提取imfs和剩余信号res emd = EMD() emd.emd(Power_uni) imfs, res = emd.get_imfs_and_residue() N = len(imfs) P_H = np.sum(imfs[0:6,:],axis=0) P_M = np.sum(imfs[6:12,:],axis=0) P_L = res P_H =np.expand_dims(P_H,axis=1) P_M =np.expand_dims(P_M,axis=1) P_L =np.expand_dims(P_L,axis=1) Nwp = Data00[:,0:7] Nwp_train = Nwp[0:96] N_min = np.min(Nwp_train,axis=0) N_gap = np.max(Nwp_train,axis=0)-np.min(Nwp_train,axis=0) Nwp_uni = (Nwp-N_min)/N_gap#(N,7) Weather = Data00[:,7:13] Weather_train = Weather[0:96] W_min = np.min(Weather_train,axis=0) W_gap = np.max(Weather_train,axis=0)-np.min(Weather_train,axis=0) Weather_uni = (Weather-W_min)/W_gap#(N,6) 优化代码
以下是部分代码的优化建议:
1. 对于以下代码段:
```
a = np.array(data00)
Data00 = a[1:m,2:n]
```
可以合并为一行:
```
Data00 = np.array(data00)[1:m,2:n]
```
2. 对于以下代码段:
```
P_H = np.sum(imfs[0:6,:],axis=0)
P_M = np.sum(imfs[6:12,:],axis=0)
P_L = res
P_H =np.expand_dims(P_H,axis=1)
P_M =np.expand_dims(P_M,axis=1)
P_L =np.expand_dims(P_L,axis=1)
```
可以使用 `np.newaxis` 替代 `np.expand_dims` 来实现:
```
P_H = np.sum(imfs[0:6,:],axis=0)[:, np.newaxis]
P_M = np.sum(imfs[6:12,:],axis=0)[:, np.newaxis]
P_L = res[:, np.newaxis]
```
3. 对于以下代码段:
```
N_min = np.min(Nwp_train,axis=0)
N_gap = np.max(Nwp_train,axis=0)-np.min(Nwp_train,axis=0)
Nwp_uni = (Nwp-N_min)/N_gap#(N,7)
```
可以使用 `np.ptp` 函数(peak-to-peak)来计算最大值和最小值的差:
```
N_min = np.min(Nwp_train,axis=0)
N_gap = np.ptp(Nwp_train,axis=0)
Nwp_uni = (Nwp-N_min)/N_gap#(N,7)
```
4. 对于以下代码段:
```
Weather = Data00[:,7:13]
Weather_train = Weather[0:96]
W_min = np.min(Weather_train,axis=0)
W_gap = np.max(Weather_train,axis=0)-np.min(Weather_train,axis=0)
Weather_uni = (Weather-W_min)/W_gap#(N,6)
```
可以使用与第三个优化建议类似的方法:
```
Weather = Data00[:,7:13]
Weather_train = Weather[0:96]
W_min = np.min(Weather_train,axis=0)
W_gap = np.ptp(Weather_train,axis=0)
Weather_uni = (Weather-W_min)/W_gap#(N,6)
```
当然,以上只是一些简单的优化建议,具体的优化效果还需要根据实际情况进行评估。
阅读全文
相关推荐
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)