zip函数与feed_dict函数的区别
时间: 2024-06-10 13:09:04 浏览: 104
zip函数是Python内置函数之一,它可以将多个可迭代对象中的元素一一对应地组合成元组的形式,返回一个迭代器。而feed_dict函数是TensorFlow中的一个方法,用于向模型的占位符中提供输入数据。它的作用是将输入数据与占位符一一对应地组合并传递给模型进行计算。两者的作用和使用场景完全不同。
相关问题
init_op, init_feed = tf.compat.v1.contrib.framework.assign_from_values(weight_dict)
这段代码使用了 TensorFlow 1.x 中的 `contrib` 模块,所以如果你正在使用 TensorFlow 2.0 或更高版本,则会出现上面提到的错误。
如果你需要在 TensorFlow 2.0 中执行类似的操作,可以使用 `tf.keras.backend.batch_set_value` 函数来实现。这个函数可以将一个或多个张量的值设置为给定的值。下面是一个示例代码:
```python
import tensorflow as tf
# 假设有一个权重字典,其中包含了模型中所有的权重张量及其对应的值
weight_dict = {...}
# 创建模型并编译
model = ...
model.compile(...)
# 获取模型的所有权重张量
weights = model.weights
# 将权重张量的值设置为给定的值
values = [weight_dict[w.name] for w in weights]
tf.keras.backend.batch_set_value(zip(weights, values))
```
在上面的示例代码中,我们首先定义了一个权重字典 `weight_dict`,其中包含了模型中所有的权重张量及其对应的值。然后,我们创建了一个模型并编译。接下来,通过 `model.weights` 属性获取了模型的所有权重张量,并将它们的值设置为 `weight_dict` 中对应的值,使用了 `tf.keras.backend.batch_set_value` 函数。
需要注意的是,`tf.keras.backend.batch_set_value` 函数的参数是一个元组列表,每个元组包含了一个张量和一个值。在示例代码中,我们使用了 `zip` 函数将权重张量和对应的值打包成元组。
给我TRPO解决BipedalWalkerHardcore_v3的代码
TRPO(Trust Region Policy Optimization)是一种用于强化学习的优化算法,用于更新策略参数。下面是使用TRPO解决BipedalWalkerHardcore_v3的Python代码示例:
```
import gym
import numpy as np
import tensorflow as tf
from scipy import optimize
env = gym.make('BipedalWalkerHardcore-v3')
# 策略网络
class PolicyNet:
def __init__(self, state_dim, action_dim, hidden_size):
self.state = tf.placeholder(tf.float32, [None, state_dim])
l1 = tf.layers.dense(self.state, hidden_size, tf.nn.relu)
l2 = tf.layers.dense(l1, hidden_size, tf.nn.relu)
self.action_mean = tf.layers.dense(l2, action_dim, tf.nn.tanh)
self.action_std = tf.Variable(1.0, trainable=True)
self.action = tf.placeholder(tf.float32, [None, action_dim])
self.advantage = tf.placeholder(tf.float32, [None])
normal_dist = tf.distributions.Normal(self.action_mean, self.action_std)
log_prob = normal_dist.log_prob(self.action)
loss = -tf.reduce_mean(log_prob * self.advantage)
kl = tf.distributions.kl_divergence(normal_dist, normal_dist)
self.kl_mean = tf.reduce_mean(kl)
self.train_op = self._create_train_op(loss)
def _create_train_op(self, loss):
optimizer = tf.train.AdamOptimizer()
grads_and_vars = optimizer.compute_gradients(loss)
flat_grads = tf.concat([tf.reshape(g, [-1]) for g, _ in grads_and_vars], axis=0)
var_shapes = [tf.reshape(v, [-1]).shape for _, v in grads_and_vars]
var_sizes = [np.prod(s) for s in var_shapes]
cum_sizes = np.cumsum([0] + var_sizes)
flat_params = tf.concat([tf.reshape(v, [-1]) for _, v in grads_and_vars], axis=0)
kl_grads = tf.gradients(self.kl_mean, grads_and_vars)
kl_grads = [tf.reshape(g, [-1]) / tf.cast(tf.reduce_prod(s), tf.float32) for g, (s, _) in zip(kl_grads, var_shapes)]
kl_grad = tf.concat(kl_grads, axis=0)
grad_kl_grad = tf.reduce_sum(flat_grads * kl_grad)
hessian_vector_product = tf.gradients(grad_kl_grad, flat_params)
hessian_vector_product = tf.concat(hessian_vector_product, axis=0)
grads_and_hvp = list(zip(hessian_vector_product, flat_params))
flat_grad_hvp = tf.concat([tf.reshape(g, [-1]) for g, _ in grads_and_hvp], axis=0)
fisher_vector_product = flat_grad_hvp + 0.1 * flat_params
gradient = tf.stop_gradient(fisher_vector_product)
learning_rate = tf.sqrt(0.01 / tf.norm(gradient))
clipped_gradient = tf.clip_by_norm(gradient, 0.5)
train_op = tf.assign_sub(flat_params, learning_rate * clipped_gradient)
train_op = tf.group(*[tf.assign(v, p) for (v, _), p in zip(grads_and_vars, tf.split(flat_params, cum_sizes[1:-1]))])
return train_op
def get_action(self, state):
return self.action_mean.eval(feed_dict={self.state: state.reshape(1, -1)})[0]
def get_kl(self, state, action):
return self.kl_mean.eval(feed_dict={self.state: state, self.action: action})
def train(self, state, action, advantage):
feed_dict = {self.state: state, self.action: action, self.advantage: advantage}
self.train_op.run(feed_dict=feed_dict)
# 值网络
class ValueNet:
def __init__(self, state_dim, hidden_size):
self.state = tf.placeholder(tf.float32, [None, state_dim])
l1 = tf.layers.dense(self.state, hidden_size, tf.nn.relu)
l2 = tf.layers.dense(l1, hidden_size, tf.nn.relu)
self.value = tf.layers.dense(l2, 1)
self.target_value = tf.placeholder(tf.float32, [None])
loss = tf.reduce_mean(tf.square(self.value - self.target_value))
self.train_op = tf.train.AdamOptimizer().minimize(loss)
def get_value(self, state):
return self.value.eval(feed_dict={self.state: state.reshape(1, -1)})[0, 0]
def train(self, state, target_value):
feed_dict = {self.state: state, self.target_value: target_value}
self.train_op.run(feed_dict=feed_dict)
# 训练
def train():
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]
hidden_size = 64
policy_net = PolicyNet(state_dim, action_dim, hidden_size)
value_net = ValueNet(state_dim, hidden_size)
gamma = 0.99
lam = 0.95
batch_size = 2048
max_step = 1000000
render = False
state = env.reset()
for step in range(max_step):
states = []
actions = []
rewards = []
values = []
for _ in range(batch_size):
action = policy_net.get_action(state)
next_state, reward, done, _ = env.step(action)
states.append(state)
actions.append(action)
rewards.append(reward)
if done:
values.append(0)
state = env.reset()
else:
values.append(value_net.get_value(next_state))
state = next_state
if render:
env.render()
values = np.array(values)
returns = np.zeros_like(rewards)
advantages = np.zeros_like(rewards)
last_return = 0
last_value = 0
last_advantage = 0
for t in reversed(range(batch_size)):
returns[t] = rewards[t] + gamma * last_return
delta = rewards[t] + gamma * last_value - values[t]
advantages[t] = delta + gamma * lam * last_advantage
last_return = returns[t]
last_value = values[t]
last_advantage = advantages[t]
advantages = (advantages - np.mean(advantages)) / np.std(advantages)
policy_net.train(np.array(states), np.array(actions), advantages)
value_net.train(np.array(states), returns)
if step % 100 == 0:
print('step=%d, reward=%f' % (step, np.mean(rewards)))
if np.mean(rewards) > 300:
render = True
train()
```
这段代码使用TensorFlow实现了一个策略网络和一个值网络,使用TRPO算法更新策略参数和值函数参数。在训练过程中,首先采集一定数量的数据,然后计算每个状态的回报和优势,并使用这些数据来更新策略网络和值网络。在每一步训练之后,打印出当前的平均回报。当平均回报超过300时,开始渲染环境。
阅读全文