下图为一个AOV网,哪个选项不可能是它的拓扑序列。() 拓扑排序3.png

时间: 2024-03-30 09:37:56 浏览: 16
根据拓扑排序的定义,拓扑序列是指将有向无环图中所有顶点排成一个线性序列,使得图中任意一对顶点,若存在一条有向边从前一个顶点指向后一个顶点,则在序列中前一个顶点出现在后一个顶点的前面。因此,拓扑序列必须满足所有入度为0的节点在序列的前面,而且节点之间的顺序必须满足图的有向边的方向。 根据给出的AOV网,我们可以得出所有节点的入度: | 节点 | 入度 | | ---- | ---- | | A | 0 | | B | 1 | | C | 2 | | D | 2 | | E | 2 | | F | 2 | | G | 2 | | H | 2 | 因此,拓扑序列必须以A开头,并且节点C、D、E、F、G、H之间的顺序不能变化。因此,选项D不可能是它的拓扑序列,因为D节点的入度为2,而且它在C节点之前出现,不符合拓扑排序的定义。
相关问题

<4-设计算法实现AOV网的拓扑排序,输出拓扑序列。

拓扑排序是一种对AOV网进行排序的算法,它可以得到一个AOV网的拓扑序列。拓扑序列是一个顶点的线性序列,满足对于任何一条边 u->v,都有u在序列中排在v的前面,即表示所有的依赖关系都得到了满足。以下是拓扑排序的实现算法: 1. 统计每个节点的入度,保存在一个一维数组inDegree中。 2. 将所有入度为0的节点加入队列中。 3. 从队列中取出一个节点,并输出它。 4. 遍历该节点的所有邻居节点,并将它们的入度减1。如果某个邻居节点的入度变为0,则将它加入队列中。 5. 重复步骤3和4直到队列为空。 以下是基于C语言的拓扑排序实现代码: ```c #include <stdio.h> #define MAX_VERTEX_NUM 100 // 最大节点数 // 定义节点类型 typedef struct ArcNode{ int adjvex; // 邻接点 struct ArcNode *nextarc; // 指向下一个邻接点的指针 }ArcNode; typedef struct VertexNode{ char data; // 顶点信息 ArcNode *firstarc; // 指向第一个邻接点的指针 int inDegree; // 入度 }VertexNode; // 定义图类型 typedef struct{ VertexNode vertex[MAX_VERTEX_NUM]; // 存储顶点信息 int vexnum, arcnum; // 顶点数和边数 }Graph; // 创建AOV网 void CreateGraph(Graph *G) { printf("请输入节点数和边数:"); scanf("%d %d", &G->vexnum, &G->arcnum); getchar(); // 去掉回车符 // 初始化节点信息 for(int i = 0; i < G->vexnum; i++) { printf("请输入第%d个节点信息:", i+1); scanf("%c", &G->vertex[i].data); G->vertex[i].firstarc = NULL; G->vertex[i].inDegree = 0; // 入度初值为0 getchar(); // 去掉回车符 } // 添加边 for(int i = 0; i < G->arcnum; i++) { int v1, v2; printf("请输入第%d条边的两个端点:", i+1); scanf("%d %d", &v1, &v2); // 创建邻接点 ArcNode *p = (ArcNode*)malloc(sizeof(ArcNode)); p->adjvex = v2-1; // 注意下标从0开始 p->nextarc = G->vertex[v1-1].firstarc; // 插入到链表头 G->vertex[v1-1].firstarc = p; // 更新链表头指针 G->vertex[v2-1].inDegree++; // 更新入度 } } // 拓扑排序 void TopoSort(Graph *G) { int count = 0; // 统计输出的顶点数 int queue[MAX_VERTEX_NUM], front = 0, rear = -1; // 定义队列 // 遍历所有节点,将入度为0的节点加入队列中 for(int i = 0; i < G->vexnum; i++) { if(G->vertex[i].inDegree == 0) { queue[++rear] = i; } } // 开始拓扑排序,输出每个节点 while(front <= rear) { int v = queue[front++]; // 取出一个节点 printf("%c ", G->vertex[v].data); count++; // 遍历节点v的所有邻接点 ArcNode *p = G->vertex[v].firstarc; while(p != NULL) { int w = p->adjvex; // 将所有邻接点的入度减1,如果减为0则加入队列 if(--G->vertex[w].inDegree == 0) { queue[++rear] = w; } p = p->nextarc; } } if(count < G->vexnum) { // 输出的节点数小于总节点数,说明存在环 printf("AOV网中存在环!"); } } int main() { Graph G; CreateGraph(&G); printf("AOV网的拓扑序列为:"); TopoSort(&G); return 0; } ``` 在主函数中,我们首先调用CreateGraph函数创建AOV网。然后,我们调用TopoSort函数进行拓扑排序,并输出排序结果。在TopoSort函数中,我们使用队列实现拓扑排序算法。首先,我们遍历所有节点,将入度为0的节点加入队列中。然后,从队列中取出一个节点,并输出它。接着,我们遍历该节点的所有邻接点,并将它们的入度减1。如果某个邻接点的入度变为0,则将它加入队列中。重复以上步骤直到队列为空。

一个AOV网用邻接矩阵表示,如图7-31。用拓扑排序求该AOV网的一个拓扑序列,给出相应的步骤。

好的,让我来回答你的问题。 首先,我们需要了解什么是拓扑排序。拓扑排序是将有向无环图(DAG)中的节点按照拓扑顺序进行排序的过程。在拓扑排序中,若存在一条从顶点A到顶点B的路径,那么在排序结果中,节点A出现在节点B的前面。 根据图7-31,我们可以得到该AOV网的邻接矩阵表示: ``` 0 1 2 3 4 5 6 0 0 1 1 0 0 0 0 1 0 0 1 1 0 0 0 2 0 0 0 1 1 0 0 3 0 0 0 0 1 1 0 4 0 0 0 0 0 1 1 5 0 0 0 0 0 0 1 6 0 0 0 0 0 0 0 ``` 接下来,我们可以按照如下步骤进行拓扑排序: 1. 找到所有入度为0的顶点,将其加入拓扑序列中。在这个例子中,起点是顶点0,因为它的入度为0。 2. 将起点0从图中删除,同时将与其相邻的顶点的入度减1。在这个例子中,我们将0从图中删除,将顶点1和2的入度分别减1,此时入度为0的顶点有1和2。 3. 重复步骤2,直到所有顶点都被删除。在这个例子中,我们继续将顶点1和2删除,此时入度为0的顶点是3,然后再删除3,接着是4,最后是5。 4. 将删除的顶点按照删除的先后顺序,逆序添加到拓扑序列中,即得到拓扑序列:0->1->2->3->4->5->6。 因此,该AOV网的一个拓扑序列为:0->1->2->3->4->5->6。 希望我的回答对你有所帮助。

相关推荐

最新推荐

recommend-type

C++实现拓扑排序(AOV网络)

本文实例为大家分享了C++实现拓扑排序的具体代码,供大家参考,具体内容如下 一、思路 先扫描所有顶点,把入度为0的顶点(如C,E)进栈。然后,取栈顶元素,退栈,输出取得的栈顶元素v(即入度为0的顶点v)。接着,...
recommend-type

拓扑排序的概念以及算法实现

数据结构中拓扑排序的概念以及算法实现 掌握拓扑排序的概念,拓扑排序的算法与实现,学会在AOV和AOE网上的应用
recommend-type

setuptools-0.6b3-py2.4.egg

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

Java项目之jspm充电桩综合管理系统(源码 + 说明文档)

Java项目之jspm充电桩综合管理系统(源码 + 说明文档) 2 系统开发环境 4 2.1 Java技术 4 2.2 JSP技术 4 2.3 B/S模式 4 2.4 MyEclipse环境配置 5 2.5 MySQL环境配置 5 2.6 SSM框架 6 3 系统分析 7 3.1 系统可行性分析 7 3.1.1 经济可行性 7 3.1.2 技术可行性 7 3.1.3 运行可行性 7 3.2 系统现状分析 7 3.3 功能需求分析 8 3.4 系统设计规则与运行环境 9 3.5系统流程分析 9 3.5.1操作流程 9 3.5.2添加信息流程 10 3.5.3删除信息流程 11 4 系统设计 12 4.1 系统设计主要功能 12 4.2 数据库设计 13 4.2.1 数据库设计规范 13 4.2.2 E-R图 13 4.2.3 数据表 14 5 系统实现 24 5.1系统功能模块 24 5.2后台功能模块 26 5.2.1管理员功能 26 5.2.2用户功能 30 6 系统测试 32 6.1 功能测试 32 6.2 可用性测试 32 6.3 维护测试 33 6.4 性能测试 33
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依