Final Updates %--------------------------------- CostNew = Cost(coord); step = Step(coord); % Sigma update if CostNew < CostOld SigmaNew = SigmaNew + step * desc; end Sigma = SigmaNew;

时间: 2023-08-15 10:12:12 浏览: 38
这段代码看起来是一个优化算法的更新步骤。其中,CostNew是根据当前坐标(coord)计算得到的新的代价函数值,CostOld是之前的代价函数值,step是当前步长,desc是代价函数的梯度方向。如果CostNew比CostOld小,就将SigmaNew按照一定的步长(step * desc)进行更新。最后将Sigma赋值为SigmaNew。根据这个描述,可能是一个梯度下降法的实现。
相关问题

k-means均值聚类算法matlab代码

Sure, here is an example of the k-means clustering algorithm implemented in MATLAB: ```matlab function [centroids, assignments] = kMeansClustering(data, k) % Initialize centroids randomly nSamples = size(data, 1); centroidIndices = randperm(nSamples, k); centroids = data(centroidIndices, :); % Initialize assignments assignments = zeros(nSamples, 1); % Main loop isConverged = false; while ~isConverged % Assign data points to nearest centroid oldAssignments = assignments; distances = pdist2(data, centroids); [~, assignments] = min(distances, [], 2); % Update centroids for i = 1:k clusterData = data(assignments == i, :); if ~isempty(clusterData) centroids(i, :) = mean(clusterData); end end % Check convergence isConverged = isequal(oldAssignments, assignments); end end ``` In this code, the `kMeansClustering` function takes two input arguments: `data` (the dataset to be clustered) and `k` (the number of clusters). It returns the final centroids (`centroids`) and the assignments of data points to clusters (`assignments`). The algorithm starts by randomly initializing the centroids. Then, it iteratively assigns each data point to the nearest centroid and updates the centroids based on the assigned data points' mean. The iterations continue until the assignments no longer change. You can use this function by passing your dataset (`data`) and the desired number of clusters (`k`). The function will return the final centroids and cluster assignments. Please note that this implementation assumes you have already loaded your data into a matrix called `data`, where each row represents a data point and each column represents a feature. You may need to modify the code if your data is represented differently or if you have additional requirements.

can you use c++ write a k-means

Yes, it is possible to use the C programming language to implement the k-means algorithm. Here is an example implementation: ``` #include <stdio.h> #include <stdlib.h> #include <math.h> #define K 3 // number of clusters #define N 10 // number of data points #define D 2 // number of dimensions typedef struct { double x[D]; } Point; double distance(Point p1, Point p2) { double sum = 0; for (int i = 0; i < D; i++) { sum += pow(p1.x[i] - p2.x[i], 2); } return sqrt(sum); } int main() { Point data[N] = { {1, 2}, {2, 1}, {2, 3}, {3, 2}, {5, 6}, {6, 5}, {6, 7}, {7, 6}, {9, 8}, {8, 9} }; Point centroids[K] = { {1, 2}, {5, 6}, {9, 8} }; int assignment[N]; // repeat until convergence int iter = 0; while (1) { // assignment step int changed = 0; for (int i = 0; i < N; i++) { double min_dist = INFINITY; int min_idx; for (int j = 0; j < K; j++) { double dist = distance(data[i], centroids[j]); if (dist < min_dist) { min_dist = dist; min_idx = j; } } if (assignment[i] != min_idx) { assignment[i] = min_idx; changed = 1; } } if (!changed) { break; } // update step int counts[K] = { 0 }; for (int i = 0; i < N; i++) { int idx = assignment[i]; for (int j = 0; j < D; j++) { centroids[idx].x[j] += data[i].x[j]; } counts[idx]++; } for (int j = 0; j < K; j++) { if (counts[j] > 0) { for (int l = 0; l < D; l++) { centroids[j].x[l] /= counts[j]; } } } iter++; } // print results printf("Iterations: %d\n", iter); for (int i = 0; i < K; i++) { printf("Centroid %d: (%.2f, %.2f)\n", i+1, centroids[i].x[0], centroids[i].x[1]); } for (int i = 0; i < N; i++) { printf("Data point %d assigned to centroid %d\n", i+1, assignment[i]+1); } return 0; } ``` This implementation uses a fixed dataset of 10 two-dimensional points and 3 clusters. The algorithm iteratively assigns each data point to the nearest centroid and updates the centroids based on the assigned points. It continues until convergence, i.e., when no data points change assignments. The final centroids and assignments are printed to the console. Note that this implementation does not handle error cases or input validation, and can be improved for better performance.

相关推荐

ind = find(desc<0); stepmax = min(-(SigmaNew(ind))./desc(ind)); deltmax = stepmax; if isempty(stepmax) || stepmax==0 Sigma = SigmaNew; return end if stepmax > 0.1 stepmax=0.1; end %----------------------------------------------------- % Projected gradient %----------------------------------------------------- while costmax<costmin [costmax, S] = costgraph(KH,stepmax,desc,SigmaNew); if costmax<costmin costmin = costmax; SigmaNew = SigmaNew + stepmax * desc; %------------------------------- % Numerical cleaning %------------------------------- % SigmaNew(find(abs(SigmaNew<option.numericalprecision)))=0; % SigmaNew=SigmaNew/sum(SigmaNew); % SigmaNew =SigmaP; % project descent direction in the new admissible cone % keep the same direction of descent while cost decrease %desc = desc .* ( (SigmaNew>0) | (desc>0) ) ; desc = desc .* ( (SigmaNew>option.numericalprecision)|(desc>0)); desc(coord) = - sum(desc([[1:coord-1] [coord+1:end]])); ind = find(desc<0); if ~isempty(ind) stepmax = min(-(SigmaNew(ind))./desc(ind)); deltmax = stepmax; costmax = 0; else stepmax = 0; deltmax = 0; end end end %----------------------------------------------------- % Linesearch %----------------------------------------------------- Step = [stepmin stepmax]; Cost = [costmin costmax]; [val,coord] = min(Cost); % optimization of stepsize by golden search while (stepmax-stepmin)>option.goldensearch_deltmax*(abs(deltmax)) && stepmax > eps stepmedr = stepmin+(stepmax-stepmin)/gold; stepmedl = stepmin+(stepmedr-stepmin)/gold; [costmedr, S1] = costgraph(KH,stepmedr,desc,SigmaNew); [costmedl, S2] = costgraph(KH,stepmedl,desc,SigmaNew); Step = [stepmin stepmedl stepmedr stepmax]; Cost = [costmin costmedl costmedr costmax]; [val,coord] = min(Cost); switch coord case 1 stepmax = stepmedl; costmax = costmedl; S = S2; case 2 stepmax = stepmedr; costmax = costmedr; S = S2; case 3 stepmin = stepmedl; costmin = costmedl; S = S2; case 4 stepmin = stepmedr; costmin = costmedr; S = S1; end end %--------------------------------- % Final Updates %--------------------------------- CostNew = Cost(coord); step = Step(coord); % Sigma update if CostNew < CostOld SigmaNew = SigmaNew + step * desc; end Sigma = SigmaNew;

详细分析一下分析代码的封装 private final double initialPrice; private double currentValuation; private final Random random = new Random(); //constructors public MarketProperty(String id, String category, double size, double initialPrice) { super(id, category, size); this.initialPrice = initialPrice; this.currentValuation = this.initialPrice; } //methods /Through takes two parameters and updates thecurrent valuaton of the property based on a random value generated using the inflacyion rate and volatility ./ public void updateValuation(double inflationRate, double volatility) { double gaussian = Math.sqrt(volatility * volatility) * random.nextGaussian() + inflationRate; this.currentValuation = initialPrice * (1 + gaussian); } //getters public double getInitialPrice() { return initialPrice; } public double getCurrentValuation() { return this.currentValuation; } public double getTotalProfit() { return currentValuation - this.initialPrice; } public double getRelativeProfit() { return getTotalProfit() / this.initialPrice; } @Override public String toString() { return "ID : " + getID() + ", Initial Price = " + getInitialPrice() + ", Current Valuation= " + getCurrentValuation() + "."; } @Override public boolean equals(Object obj) { if (this == obj) { return true; } if (obj == null) { return false; } if (getClass() != obj.getClass()) { return false; } final MarketProperty other = (MarketProperty) obj; return Objects.equals(this.currentValuation, other.currentValuation); } @Override public int hashCode() { int hash = 7; hash = 67 * hash + (int) (Double.doubleToLongBits(this.initialPrice) ^ (Double.doubleToLongBits(this.initialPrice) >>> 32)); hash = 67 * hash + (int) (Double.doubleToLongBits(this.currentValuation) ^ (Double.doubleToLongBits(this.currentValuation) >>> 32)); return hash; } //MarketProperties are compared by theircurrent valuation public int compareTo(MarketProperty other) { return Double.compare(this.currentValuation, other.currentValuation);

分析代码的OOP和原则。 public class MarketProperty extends Property { //fields private final double initialPrice; private double currentValuation; private final Random random = new Random(); //constructors public MarketProperty(String id, String category, double size, double initialPrice) { super(id, category, size); this.initialPrice = initialPrice; this.currentValuation = this.initialPrice; } //methods /*Through takes two parameters and updates thecurrent valuaton of the property based on a random value generated using the inflacyion rate and volatility .*/ public void updateValuation(double inflationRate, double volatility) { double gaussian = Math.sqrt(volatility * volatility) * random.nextGaussian() + inflationRate; this.currentValuation = initialPrice * (1 + gaussian); } //getters public double getInitialPrice() { return initialPrice; } public double getCurrentValuation() { return this.currentValuation; } public double getTotalProfit() { return currentValuation - this.initialPrice; } public double getRelativeProfit() { return getTotalProfit() / this.initialPrice; } @Override public String toString() { return "ID : " + getID() + ", Initial Price = " + getInitialPrice() + ", Current Valuation= " + getCurrentValuation() + "."; } @Override public boolean equals(Object obj) { if (this == obj) { return true; } if (obj == null) { return false; } if (getClass() != obj.getClass()) { return false; } final MarketProperty other = (MarketProperty) obj; return Objects.equals(this.currentValuation, other.currentValuation); } @Override public int hashCode() { int hash = 7; hash = 67 * hash + (int) (Double.doubleToLongBits(this.initialPrice) ^ (Double.doubleToLongBits(this.initialPrice) >>> 32)); hash = 67 * hash + (int) (Double.doubleToLongBits(this.currentValuation) ^ (Double.doubleToLongBits(this.currentValuation) >>> 32)); return hash; } //MarketProperties are compared by theircurrent valuation public int compareTo(MarketProperty other) { return Double.compare(this.currentValuation, other.currentValuation); } }

最新推荐

recommend-type

文艺高逼格28.pptx

文艺风格ppt模板文艺风格ppt模板 文艺风格ppt模板 文艺风格ppt模板 文艺风格ppt模板 文艺风格ppt模板 文艺风格ppt模板 文艺风格ppt模板 文艺风格ppt模板 文艺风格ppt模板 文艺风格ppt模板 文艺风格ppt模板 文艺风格ppt模板 文艺风格ppt模板 文艺风格ppt模板
recommend-type

PassMark OSForensics-setup-取证工具

PassMark OSForensics官方版是一款相当优秀的专业化数据恢复软件,允许你通过Hash值来校验文件的安全性,通过对比即可得知文件是否完整,或是被病毒感染,软件功能强劲,能够帮助用户快速地找到电脑中隐藏的数据,操作简便,能够快速地查找索引文件,恢复已删除文件,能够快速地找到电脑中隐藏的东西,使用这款工具可以有效地找回电脑中丢失和误删除的各种文件,并且可以鉴别可疑的文件,数字签名等,而且也可以发现最近在系统上执行的用户操作,非常简单快捷,可以说是恢复数据的好帮手,OSForensics是一个强大的快速文件识别与分析工具,允许你通过散列值来校验文件的安全性,通过对比即可得知文件是否完整,或是被病毒感染等,此款软件是非常好用的一款数据恢复软件。
recommend-type

sql数据库实例(数据库入门).doc

数据库
recommend-type

东方集团.doc

东方集团
recommend-type

公司网络安全建设及加固

公司网络安全建设及加固
recommend-type

计算机基础知识试题与解答

"计算机基础知识试题及答案-(1).doc" 这篇文档包含了计算机基础知识的多项选择题,涵盖了计算机历史、操作系统、计算机分类、电子器件、计算机系统组成、软件类型、计算机语言、运算速度度量单位、数据存储单位、进制转换以及输入/输出设备等多个方面。 1. 世界上第一台电子数字计算机名为ENIAC(电子数字积分计算器),这是计算机发展史上的一个重要里程碑。 2. 操作系统的作用是控制和管理系统资源的使用,它负责管理计算机硬件和软件资源,提供用户界面,使用户能够高效地使用计算机。 3. 个人计算机(PC)属于微型计算机类别,适合个人使用,具有较高的性价比和灵活性。 4. 当前制造计算机普遍采用的电子器件是超大规模集成电路(VLSI),这使得计算机的处理能力和集成度大大提高。 5. 完整的计算机系统由硬件系统和软件系统两部分组成,硬件包括计算机硬件设备,软件则包括系统软件和应用软件。 6. 计算机软件不仅指计算机程序,还包括相关的文档、数据和程序设计语言。 7. 软件系统通常分为系统软件和应用软件,系统软件如操作系统,应用软件则是用户用于特定任务的软件。 8. 机器语言是计算机可以直接执行的语言,不需要编译,因为它直接对应于硬件指令集。 9. 微机的性能主要由CPU决定,CPU的性能指标包括时钟频率、架构、核心数量等。 10. 运算器是计算机中的一个重要组成部分,主要负责进行算术和逻辑运算。 11. MIPS(Millions of Instructions Per Second)是衡量计算机每秒执行指令数的单位,用于描述计算机的运算速度。 12. 计算机存储数据的最小单位是位(比特,bit),是二进制的基本单位。 13. 一个字节由8个二进制位组成,是计算机中表示基本信息的最小单位。 14. 1MB(兆字节)等于1,048,576字节,这是常见的内存和存储容量单位。 15. 八进制数的范围是0-7,因此317是一个可能的八进制数。 16. 与十进制36.875等值的二进制数是100100.111,其中整数部分36转换为二进制为100100,小数部分0.875转换为二进制为0.111。 17. 逻辑运算中,0+1应该等于1,但选项C错误地给出了0+1=0。 18. 磁盘是一种外存储设备,用于长期存储大量数据,既可读也可写。 这些题目旨在帮助学习者巩固和检验计算机基础知识的理解,涵盖的领域广泛,对于初学者或需要复习基础知识的人来说很有价值。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】音频处理基础:使用Librosa

![【进阶】音频处理基础:使用Librosa](https://picx.zhimg.com/80/v2-a39e5c9bff1d920097341591ca8a2dfe_1440w.webp?source=1def8aca) # 2.1 Librosa库的安装和导入 Librosa库是一个用于音频处理的Python库。要安装Librosa库,请在命令行中输入以下命令: ``` pip install librosa ``` 安装完成后,可以通过以下方式导入Librosa库: ```python import librosa ``` 导入Librosa库后,就可以使用其提供的各种函数
recommend-type

设置ansible 开机自启

Ansible是一个强大的自动化运维工具,它可以用来配置和管理服务器。如果你想要在服务器启动时自动运行Ansible任务,通常会涉及到配置服务或守护进程。以下是使用Ansible设置开机自启的基本步骤: 1. **在主机上安装必要的软件**: 首先确保目标服务器上已经安装了Ansible和SSH(因为Ansible通常是通过SSH执行操作的)。如果需要,可以通过包管理器如apt、yum或zypper安装它们。 2. **编写Ansible playbook**: 创建一个YAML格式的playbook,其中包含`service`模块来管理服务。例如,你可以创建一个名为`setu
recommend-type

计算机基础知识试题与解析

"计算机基础知识试题及答案(二).doc" 这篇文档包含了计算机基础知识的多项选择题,涵盖了操作系统、硬件、数据表示、存储器、程序、病毒、计算机分类、语言等多个方面的知识。 1. 计算机系统由硬件系统和软件系统两部分组成,选项C正确。硬件包括计算机及其外部设备,而软件包括系统软件和应用软件。 2. 十六进制1000转换为十进制是4096,因此选项A正确。十六进制的1000相当于1*16^3 = 4096。 3. ENTER键是回车换行键,用于确认输入或换行,选项B正确。 4. DRAM(Dynamic Random Access Memory)是动态随机存取存储器,选项B正确,它需要周期性刷新来保持数据。 5. Bit是二进制位的简称,是计算机中数据的最小单位,选项A正确。 6. 汉字国标码GB2312-80规定每个汉字用两个字节表示,选项B正确。 7. 微机系统的开机顺序通常是先打开外部设备(如显示器、打印机等),再开启主机,选项D正确。 8. 使用高级语言编写的程序称为源程序,需要经过编译或解释才能执行,选项A正确。 9. 微机病毒是指人为设计的、具有破坏性的小程序,通常通过网络传播,选项D正确。 10. 运算器、控制器及内存的总称是CPU(Central Processing Unit),选项A正确。 11. U盘作为外存储器,断电后存储的信息不会丢失,选项A正确。 12. 财务管理软件属于应用软件,是为特定应用而开发的,选项D正确。 13. 计算机网络的最大好处是实现资源共享,选项C正确。 14. 个人计算机属于微机,选项D正确。 15. 微机唯一能直接识别和处理的语言是机器语言,它是计算机硬件可以直接执行的指令集,选项D正确。 16. 断电会丢失原存信息的存储器是半导体RAM(Random Access Memory),选项A正确。 17. 硬盘连同驱动器是一种外存储器,用于长期存储大量数据,选项B正确。 18. 在内存中,每个基本单位的唯一序号称为地址,选项B正确。 以上是对文档部分内容的详细解释,这些知识对于理解和操作计算机系统至关重要。