适用两级可选容量的工厂—仓库—客户的选址模型 python+cplex?
时间: 2023-10-24 13:07:47 浏览: 82
原创代码,完美复现,微电网两阶段鲁棒优化,基于matlab+yalmip+cplex实现
5星 · 资源好评率100%
可以使用Python和IBM CPLEX求解两级可选容量的工厂-仓库-客户选址模型。以下是一个简单的示例:
首先,需要导入必要的Python库和IBM CPLEX库:
```python
import cplex
from cplex.exceptions import CplexError
from cplex import SparsePair
import numpy as np
```
然后,定义模型的参数:
```python
# 客户和仓库的数量
num_customers = 10
num_warehouses = 5
# 工厂的数量和生产能力
num_factories = 3
factory_capacity = [100, 200, 150]
# 客户和仓库之间的运输成本
customer_warehouse_cost = np.random.randint(1, 10, size=(num_customers, num_warehouses))
warehouse_factory_cost = np.random.randint(1, 10, size=(num_warehouses, num_factories))
```
接下来,创建模型并添加变量和约束条件:
```python
# 创建模型
model = cplex.Cplex()
# 创建变量
# x[i][j][k]表示从仓库j到客户i使用工厂k的数量
x = [[[model.continuous_var() for k in range(num_factories)] for j in range(num_warehouses)] for i in range(num_customers)]
# y[i][j]表示是否将客户i分配到仓库j
y = [[model.binary_var() for j in range(num_warehouses)] for i in range(num_customers)]
# z[j][k]表示是否使用工厂k作为仓库j的供应商
z = [[model.binary_var() for k in range(num_factories)] for j in range(num_warehouses)]
# 添加约束条件
# 限制每个客户只能被一个仓库服务
for i in range(num_customers):
expr = SparsePair()
for j in range(num_warehouses):
expr.add(y[i][j], 1)
model.add_constraint(expr=expr, rhs=1)
# 限制每个仓库的供应量不能超过容量
for j in range(num_warehouses):
for k in range(num_factories):
expr = SparsePair()
for i in range(num_customers):
expr.add(x[i][j][k], 1)
model.add_constraint(expr=expr, rhs=factory_capacity[k] * z[j][k])
# 限制每个客户只能由一个仓库提供服务
for i in range(num_customers):
for j in range(num_warehouses):
for k in range(num_factories):
expr = SparsePair()
expr.add(x[i][j][k], 1)
expr.add(y[i][j], -1)
model.add_constraint(expr=expr, rhs=0)
# 添加目标函数
expr = SparsePair()
for i in range(num_customers):
for j in range(num_warehouses):
for k in range(num_factories):
expr.add(x[i][j][k], customer_warehouse_cost[i][j] + warehouse_factory_cost[j][k])
model.set_objective("minimize", expr)
```
最后,调用CPLEX求解器进行求解:
```python
# 求解模型
model.solve()
# 输出结果
print("最小成本为: ", model.solution.get_objective_value())
for i in range(num_customers):
for j in range(num_warehouses):
for k in range(num_factories):
if model.solution.get_values(x[i][j][k]) > 0:
print("客户", i, "由仓库", j, "使用工厂", k, "提供服务")
```
这个示例模型假设有10个客户,5个仓库和3个工厂,每个工厂有不同的生产能力。客户和仓库之间的运输成本和仓库和工厂之间的运输成本是随机生成的。模型的目标是选择哪个仓库将服务每个客户,并选择哪个工厂为每个仓库提供服务,以最小化总成本。
阅读全文