img = cv2.imread(img_path) # BGR assert img is not None, 'File Not Found ' + img_path
时间: 2024-05-20 15:19:04 浏览: 149
这是一段基于 OpenCV 的 Python 代码,目的是读取一张图片并将其保存到名为 `img` 的变量中。`cv2.imread` 函数用于读取图片,其参数为图片路径。读取后的图片是以 BGR 格式存储的,即每个像素点由蓝、绿、红三个通道的值组成。代码中使用了 `assert` 语句,用于判断 `img` 是否为空,如果为空则抛出异常,并在异常信息中包含图片路径。
相关问题
解释这段代码的作用 def get_diff_img(self, original_img_path, beautify_img_path, diff_img_path): """ :return: * """ original_img = cv2.imread(original_img_path) beautify_img = cv2.imread(beautify_img_path) difference = cv2.absdiff(original_img, beautify_img) Conv_hsv_Gray = cv2.cvtColor(difference, cv2.COLOR_BGR2GRAY) max_thresh = 50 threshs = list(range(0, max_thresh, int(max_thresh / 10))) colors = ['f1ea09', 'efd60a', 'edc20b', 'eaae0d', 'e89a0e', 'e6850f', 'e47110', 'e15d12', 'df4913', 'dd3514'] diff_image = np.zeros(original_img.shape, dtype=np.uint8) for idx, thresh in enumerate(threshs): ret, mask = cv2.threshold(Conv_hsv_Gray, thresh, 255, cv2.THRESH_BINARY_INV) color = colors[idx] diff_image[mask != 255] = np.array(list(int(color[i:i + 2], 16) for i in (0, 2, 4))) diff_image = cv2.cvtColor(diff_image, cv2.COLOR_RGBA2BGRA) cv2.imwrite(diff_img_path, diff_image)
这段代码主要实现了比较两张图片的不同之处,并生成一张差异图。具体来说,它读取了两张图片的路径,使用OpenCV库的函数cv2.imread()读取这两张图片,接着使用cv2.absdiff()计算出两张图片的差异,将结果转换为灰度图像并存储在Conv_hsv_Gray中。然后,它定义了一个阈值列表threshs和一个颜色列表colors,用于根据不同的阈值给差异图像上色。接着,它将差异图像初始化为0,并使用循环迭代不同的阈值,并使用cv2.threshold()函数将灰度图像二值化,生成一个掩膜(mask),然后将颜色应用于掩膜区域,最后将结果存储在diff_image中。最后,它将diff_image转换为BGRA格式并将其写入指定的差异图像路径。
# 图像读取和预处理import cv2import numpy as npdef read_img(img_path): img = cv2.imread(img_path) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = img.astype(np.float32) / 255.0 return img# 数据增强from keras.preprocessing.image import ImageDataGeneratortrain_datagen = ImageDataGenerator( rescale=1./255, rotation_range=20, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2, zoom_range=0.2, horizontal_flip=True, fill_mode='nearest')val_datagen = ImageDataGenerator(rescale=1./255)train_generator = train_datagen.flow_from_directory( train_dir, target_size=(150, 150), batch_size=32, class_mode='binary')validation_generator = val_datagen.flow_from_directory( validation_dir, target_size=(150, 150), batch_size=32, class_mode='binary')
这段代码是关于图像读取和预处理的,读取图片并进行处理,将图像转换为 RGB 格式,改变像素值的范围以便网络训练使用。同时,还包括数据增强的部分,通过对数据进行旋转、平移、拉伸、翻转等操作,增加数据集的多样性,提高模型的鲁棒性和泛化能力。最后,使用 Keras 提供的 ImageDataGenerator 类生成训练集和验证集的数据流。其中,训练集和验证集的图片都被缩放为 150x150 的大小,并且指定了 batch_size 和 class_mode 等参数。
阅读全文