请用R帮我写一个COX模型的代码,特征名是`wavelet.LLH.firstorder.Uniformity`,`wavelet.HHL.firstorder.Mean`,`log.sigma.5.0.mm.3D.glszm.SmallAreaEmphasis`,数据名称是df
时间: 2023-12-07 10:03:50 浏览: 139
好的,以下是一个简单的COX模型的R代码,特征名是`wavelet.LLH.firstorder.Uniformity`,`wavelet.HHL.firstorder.Mean`,`log.sigma.5.0.mm.3D.glszm.SmallAreaEmphasis`,数据名称是df。
```r
library(survival)
# 定义特征名
feature_names <- c("wavelet.LLH.firstorder.Uniformity",
"wavelet.HHL.firstorder.Mean",
"log.sigma.5.0.mm.3D.glszm.SmallAreaEmphasis")
# 定义模型公式
formula <- as.formula(paste("Surv(time, status) ~", paste(feature_names, collapse = "+")))
# 拟合COX模型
cox_model <- coxph(formula, data = df)
# 查看模型的摘要信息
summary(cox_model)
```
在这段代码中,我们首先加载了`survival`包,然后定义了特征名和模型公式。接着,我们使用`coxph()`函数来拟合COX模型,其中`Surv()`函数用于定义生存时间和状态变量。最后,我们使用`summary()`函数来查看模型的摘要信息,包括每个特征的系数、标准误差、显著性水平等等。
相关问题
帮我用R写一个COX模型构建的代码,以及写一个基于COX模型的nomogram代码,其中,数据集的名称是df,用来构建COX模型的特征名称是'original:firstorder:RobustMeanAbsoluteDeviation', 'log-sigma-4-0-mm-3D:firstorder:InterquartileRange', 'log-sigma-5-0-mm-3D:glszm:SmallAreaEmphasis', 'wavelet-LLH:firstorder:InterquartileRange', 'wavelet-LLH:firstorder:Uniformity', 'wavelet-HHL:firstorder:Mean', 'wavelet-HHH:firstorder:Mean, 'wavelet-LLL:glcm:Autocorrelation', 'wavelet-LLL:glcm:ClusterProminence','T','E']
好的,以下是COX模型构建的代码:
```R
library(survival)
# 基于数据集df构建COX模型
cox_model <- coxph(Surv(T, E) ~ original:firstorder:RobustMeanAbsoluteDeviation +
log-sigma-4-0-mm-3D:firstorder:InterquartileRange +
log-sigma-5-0-mm-3D:glszm:SmallAreaEmphasis +
wavelet-LLH:firstorder:InterquartileRange +
wavelet-LLH:firstorder:Uniformity +
wavelet-HHL:firstorder:Mean +
wavelet-HHH:firstorder:Mean +
wavelet-LLL:glcm:Autocorrelation +
wavelet-LLL:glcm:ClusterProminence, data = df)
# 输出COX模型的摘要信息
summary(cox_model)
```
接下来是基于COX模型的nomogram代码:
```R
library(rms)
# 构建基于COX模型的nomogram
nomogram_model <- nomogram(cox_model, fun = function(x) 1 - plogis(x),
funlabel = "Survival Probability",
predictor = TRUE, lp = FALSE,
xfrac = 0.5, yfrac = 0.5,
cex.axis = 0.8, cex.lab = 0.8,
col.lines = "gray70",
col.points = "gray30",
lwd.lines = 1.5,
lwd.points = 1.5,
font.main = 1, font.sub = 1,
font.axis = 1, font.lab = 1)
# 输出nomogram
print(nomogram_model)
```
希望对你有所帮助!
coxm <- cph(Surv(T,E)~`original:firstorder:RobustMeanAbsoluteDeviation`+`log-sigma-4-0-mm-3D:firstorder:InterquartileRange`+`log-sigma-5-0-mm-3D:glszm:SmallAreaEmphasis`+`wavelet-LLH:firstorder:InterquartileRange`+`wavelet-LLH:firstorder:Uniformity`+`wavelet-HHL:firstorder:Mean`+`wavelet-LLL:glcm:Autocorrelation`+`wavelet-LLL:glcm:ClusterProminence`,x=T,y=T,data=df,surv=T) > cox.zph(coxm) Error in solve.default(imat, u) : system is computationally singular: reciprocal condition number = 1.06333e-24检查错误
这个错误提示表明在运行 `cox.zph()` 函数时,出现了计算矩阵的逆矩阵的错误,这通常是由于数据中存在多重共线性的问题导致的。建议您检查变量之间是否存在高度相关性,如果存在,可以考虑删除其中一些变量或者使用正则化方法来解决。另外,您也可以尝试使用其他的 Cox 比例风险模型函数,例如 `coxph()` 或者 `cch()` 等,以避免这个问题。
阅读全文
相关推荐















