解释always @(posedge clk or negedge rst_n) begin if (!rst_n) begin //复位,初始化 s1 <= 1'b0; exp1 <= 8'b0; man1 <= {1'b1, 23'b0}; end else if (en) begin s1 <= flout_a[31]; exp1 <= flout_a[30:23]; man1 <= {1'b1, flout_a[22:0]}; end end
时间: 2024-04-03 21:30:35 浏览: 84
这是一段 Verilog HDL 代码,表示一个时序逻辑块,其中 `@(posedge clk or negedge rst_n)` 是一个触发器,表示在时钟上升沿或者复位信号下降沿时执行逻辑。
当复位信号 `rst_n` 为低电平时,表示进行复位操作,将 `s1` 赋值为 0,将 `exp1` 赋值为 0,将 `man1` 赋值为 {1'b1, 23'b0}。
当 `en` 为高电平时,表示执行操作,将 `s1` 赋值为 `flout_a[31]`,将 `exp1` 赋值为 `flout_a[30:23]`,将 `man1` 赋值为 {1'b1, flout_a[22:0]}。其中 `flout_a` 是一个 32 位浮点数,`s1` 是符号位,`exp1` 是指数位,`man1` 是尾数位。
相关问题
always @(posedge clk or negedge rst_n) if(rst_n) clk_1 <= 1'b0; else clk_1 <= clk_0; always @(posedge clk or negedge rst_n) if(rst_n) clk_2 <= 1'b0; else clk_2 <= clk_1; always @(posedge clk or negedge rst_n) if(rst_n) clk_3 <= 1'b0; else clk_3 <= clk_2;
这段代码展示了三个时钟信号(clk_1, clk_2, clk_3)的递推关系。当复位信号 rst_n 为高电平时,所有时钟信号都被重置为低电平。否则,每个时钟信号都是前一个时钟信号的延迟版本。也就是说,clk_1 是 clk_0 的延迟版本,clk_2 是 clk_1 的延迟版本,以此类推。这种递推关系可以用于时钟延迟和同步电路设计中。请问有什么问题我可以帮助您解答的吗?
module crc8( data_in, clk, rst_n, crc7, crc6, crc5, crc4, crc3, crc2, crc1, crc0 ); input wire data_in; input wire clk; input wire rst_n; output wire crc7; output wire crc6; output wire crc5; output wire crc4; output wire crc3; output wire crc2; output wire crc1; output wire crc0; wire SYNTHESIZED_WIRE_5; reg DFF_inst8; reg DFF_inst; wire SYNTHESIZED_WIRE_2; wire SYNTHESIZED_WIRE_3; reg DFF_inst3; reg DFF_inst4; reg DFF_inst5; reg DFF_inst6; reg DFF_inst7; reg DFF_inst2; assign crc7 = DFF_inst8; assign crc6 = DFF_inst7; assign crc5 = DFF_inst6; assign crc4 = DFF_inst5; assign crc3 = DFF_inst4; assign crc2 = DFF_inst3; assign crc1 = DFF_inst2; assign crc0 = DFF_inst; always@(posedge clk or negedge rst_n) begin if (!rst_n) begin DFF_inst <= 1; end else begin DFF_inst <= SYNTHESIZED_WIRE_5; end end assign SYNTHESIZED_WIRE_5 = data_in ^ DFF_inst8; assign SYNTHESIZED_WIRE_2 = SYNTHESIZED_WIRE_5 ^ DFF_inst; always@(posedge clk or negedge rst_n) begin if (!rst_n) begin DFF_inst2 <= 1; end else begin DFF_inst2 <= SYNTHESIZED_WIRE_2; end end always@(posedge clk or negedge rst_n) begin if (!rst_n) begin DFF_inst3 <= 1; end else begin DFF_inst3 <= SYNTHESIZED_WIRE_3; end end always@(posedge clk or negedge rst_n) begin if (!rst_n) begin DFF_inst4 <= 1; end else begin DFF_inst4 <= DFF_inst3; end end always@(posedge clk or negedge rst_n) begin if (!rst_n) begin DFF_inst5 <= 1; end else begin DFF_inst5 <= DFF_inst4; end end always@(posedge clk or negedge rst_n) begin if (!rst_n) begin DFF_inst6 <= 1; end else begin DFF_inst6 <= DFF_inst5; end end always@(posedge clk or negedge rst_n) begin if (!rst_n) begin DFF_inst7 <= 1; end else begin DFF_inst7 <= DFF_inst6; end end always@(posedge clk or negedge rst_n) begin if (!rst_n) begin DFF_inst8 <= 1; end else begin DFF_inst8 <= DFF_inst7; end end assign SYNTHESIZED_WIRE_3 = SYNTHESIZED_WIRE_5 ^ DFF_inst2; endmodule 把这个代码修改成CRC-12编码器
好的,这里是修改后的CRC-12编码器代码,其中使用的CRC多项式为x^12 + x^11 + x^3 + x^2 + x + 1:
```
module crc12(
data_in,
clk,
rst_n,
crc11,
crc10,
crc9,
crc8,
crc7,
crc6,
crc5,
crc4,
crc3,
crc2,
crc1,
crc0
);
input wire data_in;
input wire clk;
input wire rst_n;
output wire crc11;
output wire crc10;
output wire crc9;
output wire crc8;
output wire crc7;
output wire crc6;
output wire crc5;
output wire crc4;
output wire crc3;
output wire crc2;
output wire crc1;
output wire crc0;
wire [11:0] crc;
wire [11:0] crc_next;
wire [11:0] data;
assign data = {data_in, 6'b0};
always@(posedge clk or negedge rst_n) begin
if (!rst_n) begin
crc <= 12'hFFF;
end
else begin
crc <= crc_next;
end
end
assign crc11 = crc[11];
assign crc10 = crc[10];
assign crc9 = crc[9];
assign crc8 = crc[8];
assign crc7 = crc[7];
assign crc6 = crc[6];
assign crc5 = crc[5];
assign crc4 = crc[4];
assign crc3 = crc[3];
assign crc2 = crc[2];
assign crc1 = crc[1];
assign crc0 = crc[0];
assign crc_next[11:0] = {crc[10:0], 1'b0} ^ (data << 4) ^ (data << 1) ^ data;
endmodule
```
这个代码使用了一个12位的寄存器crc来保存当前的CRC校验值,每次输入一个数据位时,根据CRC多项式进行异或运算得到下一个CRC值,并将其保存到crc_next中。在时钟上升沿时,将crc_next的值赋给crc寄存器,完成一次CRC计算。最后,根据CRC校验位的位置将crc寄存器的值输出到crc11到crc0中,即可得到CRC-12校验码。
阅读全文