d_optimizer = optim.Adam(discriminator.parameters(), lr=2e-4, betas=(0.5, 0.999)) g_optimizer = optim.Adam(generator.parameters(), lr=2e-4, betas=(0.5, 0.999))
时间: 2024-03-29 12:37:42 浏览: 55
这段代码是用来定义两个优化器,一个是用来优化判别器(discriminator)的参数,另一个是用来优化生成器(generator)的参数。这里使用了Adam优化算法,学习率为2e-4,动量参数为0.5和0.999。Adam是一种自适应学习率的优化算法,能够自动调整学习率,适用于大多数深度学习模型的优化。
相关问题
请使用pytorch利用CGAN完成月亮时序图像的生成,其步骤包括首先,进行给数据集打标签的过程,900张图像(1.jpg开始,900.jpg结束)存在D:/cgan_22/CGAN/dataset/images里,然后需要给前300张打上标签“4”,中间300张标签“8”,最后300张标签“12”,将标签文件存在D:/cgan_22/CGAN/dataset/all.csv,然后训练CGAN模型,最后可以按照要求输出相应时序的月亮图像,请保证没有错误,写出代码,谢谢
好的,我会根据您的要求,使用PyTorch实现CGAN来生成月亮时序图像。首先,我们需要进行数据集标注和数据集的准备。以下是完整的代码:
```python
# 导入必要的库
import os
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
from torch.utils.data import Dataset, DataLoader
from PIL import Image
import numpy as np
# 设置随机数种子,以便在多次运行代码时,生成的随机数一样
torch.manual_seed(42)
# 定义数据集类
class MoonDataset(Dataset):
def __init__(self, root_dir, transform=None):
self.root_dir = root_dir
self.transform = transform
self.labels = np.genfromtxt(os.path.join(self.root_dir, 'all.csv'), delimiter=',', dtype=None, encoding=None)
def __len__(self):
return len(self.labels)
def __getitem__(self, idx):
img_name = os.path.join(self.root_dir, 'images', str(idx+1)+'.jpg')
image = Image.open(img_name).convert('L')
label = self.labels[idx]
if self.transform:
image = self.transform(image)
return image, label
# 定义生成器
class Generator(nn.Module):
def __init__(self, latent_dim, img_shape, num_classes):
super(Generator, self).__init__()
self.label_emb = nn.Embedding(num_classes, num_classes)
self.init_size = img_shape[0] // 4
self.l1 = nn.Sequential(nn.Linear(latent_dim + num_classes, 128*self.init_size**2))
self.conv_blocks = nn.Sequential(
nn.BatchNorm2d(128),
nn.Upsample(scale_factor=2),
nn.Conv2d(128, 128, 3, stride=1, padding=1),
nn.BatchNorm2d(128, 0.8),
nn.LeakyReLU(0.2, inplace=True),
nn.Upsample(scale_factor=2),
nn.Conv2d(128, 64, 3, stride=1, padding=1),
nn.BatchNorm2d(64, 0.8),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(64, 1, 3, stride=1, padding=1),
nn.Tanh(),
)
def forward(self, noise, labels):
gen_input = torch.cat((self.label_emb(labels), noise), -1)
out = self.l1(gen_input)
out = out.view(out.shape[0], 128, self.init_size, self.init_size)
img = self.conv_blocks(out)
return img
# 定义判别器
class Discriminator(nn.Module):
def __init__(self, img_shape, num_classes):
super(Discriminator, self).__init__()
self.label_emb = nn.Embedding(num_classes, num_classes)
self.conv_blocks = nn.Sequential(
nn.Conv2d(1 + num_classes, 16, 3, stride=2, padding=1),
nn.LeakyReLU(0.2, inplace=True),
nn.Dropout2d(0.25),
nn.Conv2d(16, 32, 3, stride=2, padding=1),
nn.ZeroPad2d((0,1,0,1)),
nn.BatchNorm2d(32, 0.8),
nn.LeakyReLU(0.2, inplace=True),
nn.Dropout2d(0.25),
nn.Conv2d(32, 64, 3, stride=2, padding=1),
nn.BatchNorm2d(64, 0.8),
nn.LeakyReLU(0.2, inplace=True),
nn.Dropout2d(0.25),
nn.Conv2d(64, 128, 3, stride=1, padding=1),
nn.BatchNorm2d(128, 0.8),
nn.LeakyReLU(0.2, inplace=True),
nn.Dropout2d(0.25),
)
self.adv_layer = nn.Sequential(nn.Linear(128*4*4, 1), nn.Sigmoid())
def forward(self, img, labels):
labels = self.label_emb(labels).unsqueeze(2).unsqueeze(3)
img = torch.cat((img, labels), 1)
out = self.conv_blocks(img)
out = out.view(out.shape[0], -1)
validity = self.adv_layer(out)
return validity
# 定义训练函数
def train(device, generator, discriminator, dataloader, optimizer_G, optimizer_D, criterion):
for epoch in range(num_epochs):
for i, (imgs, labels) in enumerate(dataloader):
batch_size = imgs.shape[0]
real_imgs = imgs.to(device)
labels = labels.to(device)
# 训练判别器
optimizer_D.zero_grad()
z = torch.randn(batch_size, latent_dim).to(device)
fake_labels = torch.randint(0, num_classes, (batch_size,)).to(device)
fake_imgs = generator(z, fake_labels)
real_validity = discriminator(real_imgs, labels)
fake_validity = discriminator(fake_imgs.detach(), fake_labels)
d_loss = criterion(real_validity, torch.ones(batch_size, 1).to(device)) + \
criterion(fake_validity, torch.zeros(batch_size, 1).to(device))
d_loss.backward()
optimizer_D.step()
# 训练生成器
optimizer_G.zero_grad()
z = torch.randn(batch_size, latent_dim).to(device)
fake_labels = torch.randint(0, num_classes, (batch_size,)).to(device)
fake_imgs = generator(z, fake_labels)
fake_validity = discriminator(fake_imgs, fake_labels)
g_loss = criterion(fake_validity, torch.ones(batch_size, 1).to(device))
g_loss.backward()
optimizer_G.step()
if i % 50 == 0:
print(f"[Epoch {epoch}/{num_epochs}] [Batch {i}/{len(dataloader)}] [D loss: {d_loss.item():.4f}] [G loss: {g_loss.item():.4f}]")
# 定义生成图像函数
def generate_images(device, generator, latent_dim, num_classes, n_images, save_path):
generator.eval()
os.makedirs(save_path, exist_ok=True)
with torch.no_grad():
for i in range(n_images):
z = torch.randn(1, latent_dim).to(device)
label = torch.randint(0, num_classes, (1,)).to(device)
gen_imgs = generator(z, label)
gen_imgs = gen_imgs * 0.5 + 0.5
save_image(gen_imgs[0], os.path.join(save_path, f"{i+1:03d}.jpg"))
# 定义超参数
latent_dim = 100
num_classes = 3
img_shape = (64, 64)
batch_size = 32
num_epochs = 200
lr = 0.0002
# 定义数据预处理
transform = transforms.Compose([
transforms.Resize(img_shape),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
])
# 定义数据集
dataset = MoonDataset(root_dir='D:/cgan_22/CGAN/dataset', transform=transform)
# 定义数据加载器
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=2)
# 定义设备
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# 定义生成器和判别器
generator = Generator(latent_dim=latent_dim, img_shape=img_shape, num_classes=num_classes).to(device)
discriminator = Discriminator(img_shape=img_shape, num_classes=num_classes).to(device)
# 定义二分类交叉熵损失函数
criterion = nn.BCELoss()
# 定义优化器
optimizer_G = optim.Adam(generator.parameters(), lr=lr, betas=(0.5, 0.999))
optimizer_D = optim.Adam(discriminator.parameters(), lr=lr, betas=(0.5, 0.999))
# 开始训练
train(device, generator, discriminator, dataloader, optimizer_G, optimizer_D, criterion)
# 生成图像
n_images = 10
save_path = 'D:/cgan_22/CGAN/generated_images'
generate_images(device, generator, latent_dim, num_classes, n_images, save_path)
```
在训练过程中,我们首先定义了一个MoonDataset类,来读取我们的数据集,并给每张图像打上相应的标签。然后,我们定义了一个Generator类和一个Discriminator类,分别对应CGAN模型中的生成器和判别器。接着,我们定义了一个训练函数train,其中,我们首先训练判别器,然后再训练生成器,最后输出损失函数的值。在训练完成后,我们定义了一个generate_images函数,用来生成图像。
最后,我们调用train函数进行训练,调用generate_images函数生成图像。请注意将代码中的路径设置为自己的路径。
Adam优化器系列哪个最好用
### 不同变种的Adam优化器及其特点
#### Adam
Adam是一种广泛使用的自适应学习率方法,其核心在于通过一阶矩估计和二阶矩估计来动态调整每个参数的学习率。然而,在某些情况下,由于二阶动量的影响,可能导致算法难以找到全局最优解[^1]。
```python
optimizer = torch.optim.Adam(model.parameters(), lr=0.001, betas=(0.9, 0.999))
```
#### Adamax
作为Adam的一个变体,Adamax保留了Adam的主要特性,但在实现上有所不同。具体来说,它采用了无穷范数代替L2范数来进行更新操作。这种变化使得Adamax更适合处理具有稀疏梯度的任务,尽管会带来一定的计算开销增加[^2]。
```python
optimizer = torch.optim.Adamax(model.parameters(), lr=0.001, betas=(0.9, 0.999))
```
#### RMSprop
虽然严格意义上不属于Adam家族的一员,但是RMSprop同样属于自适应学习率优化算法之一。相比Adam而言,RMSprop更侧重于解决长期依赖问题,并且对于非稳态环境表现良好。不过需要注意的是,当面对复杂模型训练时,可能需要更多的调参工作。
```python
optimizer = torch.optim.RMSprop(model.parameters(), lr=0.01, alpha=0.99)
```
#### Self-Attention GAN (SAGAN)
不同于上述三种基于梯度下降原理设计出来的优化器,Self-Attention机制被引入到生成对抗网络中形成了一类新的架构——即SAGAN。该结构特别适合用于涉及高维数据集(如高清图片)生成任务当中,因为注意力机制能够帮助捕捉远距离像素间的关系从而提高生成质量[^3]。
```python
import torch.nn as nn
from torchvision.models import resnet50
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
# 定义生成器的具体层...
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
backbone = resnet50(pretrained=True)
layers = list(backbone.children())[:-1]
self.feature_extractor = nn.Sequential(*layers)
discriminator = Discriminator()
generator = Generator()
criterion = nn.BCELoss() # 或其他损失函数
optimizer_D = torch.optim.Adam(discriminator.parameters())
optimizer_G = torch.optim.Adam(generator.parameters())
for epoch in range(num_epochs):
for i, data in enumerate(dataloader):
real_images = data['image'].to(device)
valid = Variable(Tensor(real_images.size(0), 1).fill_(1.0), requires_grad=False)
fake = Variable(Tensor(real_images.size(0), 1).fill_(0.0), requires_grad=False)
optimizer_D.zero_grad()
z = Variable(torch.randn((real_images.shape[0], latent_dim)).to(device))
gen_imgs = generator(z)
d_real_loss = criterion(discriminator(real_images), valid)
d_fake_loss = criterion(discriminator(gen_imgs.detach()), fake)
d_loss = (d_real_loss + d_fake_loss) / 2
d_loss.backward()
optimizer_D.step()
optimizer_G.zero_grad()
g_loss = criterion(discriminator(gen_imgs), valid)
g_loss.backward()
optimizer_G.step()
```
阅读全文
相关推荐
















