Let's define a training step by defining the loss_fn globally and implementing a step with the following substeps: all gradients must be reseted by optimizer.zero_grad() get the result of a forward pass of the network calculate the loss for this batch do a backwardpass using .backward() on the calculated loss do an optimizer step 帮我按照上面的要求补充下面的代码 def training_step(net, optimizer, loss_fn, batch): img, gt = batch # implement training step ... return loss
时间: 2024-02-14 21:17:28 浏览: 120
BMC - Step-by-Step Guide to Building a CMDB - 130016
好的,请参考下面的完整代码:
```python
def training_step(net, optimizer, loss_fn, batch):
img, gt = batch
# reset gradients
optimizer.zero_grad()
# forward pass
out = net(img)
# calculate loss
loss = loss_fn(out, gt)
# backward pass
loss.backward()
# optimizer step
optimizer.step()
return loss
```
这段代码中,我们定义了一个名为`training_step`的函数,它接受四个参数:`net`表示网络模型,`optimizer`表示优化器,`loss_fn`表示损失函数,`batch`表示输入数据。
在函数体中,我们首先通过`optimizer.zero_grad()`来将所有的梯度清零。然后我们使用输入数据`img`调用网络模型`net`的前向传播方法,得到输出结果`out`。接下来,我们使用损失函数`loss_fn`计算模型输出结果和实际结果`gt`之间的损失。然后我们调用`loss.backward()`来计算所有参数的梯度。最后,我们使用`optimizer.step()`来更新所有参数。最后,我们将损失值`loss`作为函数的返回值。
阅读全文