return nn.sequential(*layers)
时间: 2023-04-25 07:01:28 浏览: 113
这是一个Python代码,用于创建一个神经网络模型。它使用了PyTorch框架中的nn模块,其中的sequential函数可以将多个层组合成一个序列模型。参数layers是一个包含多个层的列表或元组,它们按照顺序依次组成神经网络模型。
相关问题
return nn.Sequential(*layers)
`return nn.Sequential(*layers)`是一个返回一个包含给定图层的序列的函数。其中,`nn.Sequential`是一个用于构建神经网络模型的类,它可以接受一系列的网络层作为参数,并按照顺序将它们组合成一个神经网络模型。`*layers`表示将一个列表或元组中的所有元素作为单独的参数传递给函数。因此,`nn.Sequential(*layers)`将会返回一个包含给定图层的序列。
下面是一个示例,展示如何使用`nn.Sequential`和`return nn.Sequential(*layers)`来构建一个简单的神经网络模型:
```python
import torch.nn as nn
# 定义一个包含两个全连接层的神经网络模型
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.layers = nn.Sequential(
nn.Linear(784, 256),
nn.ReLU(),
nn.Linear(256, 10),
nn.Softmax(dim=1)
)
def forward(self, x):
x = x.view(x.size(0), -1)
x = self.layers(x)
return x
net = Net()
print(net)
```
from collections import OrderedDict import torch import torch.nn.functional as F import torchvision from torch import nn import models.vgg_ as models class BackboneBase_VGG(nn.Module): def __init__(self, backbone: nn.Module, num_channels: int, name: str, return_interm_layers: bool): super().__init__() features = list(backbone.features.children()) if return_interm_layers: if name == 'vgg16_bn': self.body1 = nn.Sequential(*features[:13]) self.body2 = nn.Sequential(*features[13:23]) self.body3 = nn.Sequential(*features[23:33]) self.body4 = nn.Sequential(*features[33:43]) else: self.body1 = nn.Sequential(*features[:9]) self.body2 = nn.Sequential(*features[9:16]) self.body3 = nn.Sequential(*features[16:23]) self.body4 = nn.Sequential(*features[23:30]) else: if name == 'vgg16_bn': self.body = nn.Sequential(*features[:44]) # 16x down-sample elif name == 'vgg16': self.body = nn.Sequential(*features[:30]) # 16x down-sample self.num_channels = num_channels self.return_interm_layers = return_interm_layers def forward(self, tensor_list): out = [] if self.return_interm_layers: xs = tensor_list for _, layer in enumerate([self.body1, self.body2, self.body3, self.body4]): xs = layer(xs) out.append(xs) else: xs = self.body(tensor_list) out.append(xs) return out class Backbone_VGG(BackboneBase_VGG): """ResNet backbone with frozen BatchNorm.""" def __init__(self, name: str, return_interm_layers: bool): if name == 'vgg16_bn': backbone = models.vgg16_bn(pretrained=True) elif name == 'vgg16': backbone = models.vgg16(pretrained=True) num_channels = 256 super().__init__(backbone, num_channels, name, return_interm_layers) def build_backbone(args): backbone = Backbone_VGG(args.backbone, True) return backbone if __name__ == '__main__': Backbone_VGG('vgg16', True)
这段代码是一个基于VGG的神经网络模型的定义,主要用于特征提取。其中包括两个类:`BackboneBase_VGG`和`Backbone_VGG`以及一个函数`build_backbone`。
`BackboneBase_VGG`类是VGG的基础类,用于构建VGG神经网络模型。它的初始化函数接受四个参数:`backbone`,`num_channels`,`name`和`return_interm_layers`,其中`backbone`表示VGG的主干网络,`num_channels`表示输出的通道数,`name`表示VGG的名称,`return_interm_layers`表示是否返回中间层的输出。
`Backbone_VGG`类继承自`BackboneBase_VGG`类,主要用于构建一个冻结BatchNorm的VGG神经网络模型。它的初始化函数接受两个参数:`name`和`return_interm_layers`,其中`name`表示VGG的名称,`return_interm_layers`表示是否返回中间层的输出。这个类的主要作用是将`BackboneBase_VGG`类中的属性和方法进行实例化,然后通过调用父类的`__init__`方法进行初始化。
`build_backbone`函数是用于构建VGG神经网络模型的函数,它接受一个参数`args`,其中包含了VGG神经网络模型的一些参数。在这个函数中,会调用`Backbone_VGG`类来构建一个VGG神经网络模型,并将其返回。
最后,在`if __name__ == '__main__':`中,会创建一个`Backbone_VGG`类的实例对象,并传入参数`'vgg16'`和`True`进行初始化。
阅读全文