如果直接采用牛顿迭代法求解该非线性方程组,求解过程不会轻易收敛。本文采用的方法为:先给出一个壁面温度,由质量守恒方程求出一个烧蚀后退速率,再由能量守恒方程求出另一个烧蚀后退率,比较和,这是一个完整的增量步。增加直至和的差值小于一个无穷小数。换一种说法

时间: 2023-06-14 11:07:04 浏览: 54
,就是采用迭代的方法,先给定一个初值,然后对该初值进行逐步调整,每次调整的大小称为增量步。在每次调整后,都计算出新的烧蚀后退速率和烧蚀后退率,并将它们相加得到一个新的和。然后将新的和与上一次的和进行比较,如果它们的差值小于一个事先设定的无穷小数,就停止迭代,否则继续进行下一次迭代。这样,通过不断地进行增量步调整,最终可以得到一个满足精度要求的解。
相关问题

MATLAB牛顿迭代法求解非线性方程组

MATLAB中可以使用牛顿迭代法来求解非线性方程组。牛顿迭代法是一种迭代的数值方法,通过不断逼近方程组的解来求解非线性方程组。 下面是使用MATLAB实现牛顿迭代法求解非线性方程组的步骤: 1. 定义方程组:首先需要定义一个函数,该函数返回一个向量,表示非线性方程组的各个方程。例如,假设要求解的非线性方程组为: ``` f1(x, y) = 0 f2(x, y) = 0 ``` 则可以定义一个函数如下: ```matlab function F = equations(x) F(1) = f1(x(1), x(2)); F(2) = f2(x(1), x(2)); end ``` 2. 初始化迭代:选择一个初始点作为迭代的起点,例如,可以选择一个初始点`x0`。 3. 迭代计算:使用牛顿迭代公式进行迭代计算,直到满足停止条件。牛顿迭代公式如下: ``` x(k+1) = x(k) - J(x(k)) \ F(x(k)) ``` 其中,`x(k)`表示第k次迭代的解向量,`J(x(k))`是方程组的雅可比矩阵,`F(x(k))`是方程组的函数值向量。 在MATLAB中,可以使用`fsolve`函数来实现牛顿迭代法。`fsolve`函数会自动计算雅可比矩阵,并进行迭代计算,直到满足停止条件。例如,可以使用以下代码进行求解: ```matlab x0 = [x0_initial_guess, y0_initial_guess]; % 初始点 options = optimoptions('fsolve', 'Display', 'iter'); % 设置选项 [x, fval] = fsolve(@equations, x0, options); % 求解方程组 ``` 其中,`@equations`表示方程组函数的句柄,`x0`是初始点,`options`是求解选项,`x`是求解得到的解向量,`fval`是方程组的函数值向量。 需要注意的是,牛顿迭代法可能会出现收敛性问题,因此在实际应用中需要进行收敛性判断和处理。

牛顿迭代法求解非线性方程组

### 回答1: 牛顿迭代法是一种求解非线性方程组的方法,它可以用来求解一般的非线性方程组,也可以用来求解特定的非线性方程组。 假设我们要求解的非线性方程组为: f1(x1, x2, …, xn) = 0 f2(x1, x2, …, xn) = 0 … fn(x1, x2, …, xn) = 0 其中,x1, x2, …, xn 是未知量,f1, f2, …, fn 是已知函数。 牛顿迭代法的基本思想是,对于某个初始点 (x1^0, x2^0, …, xn^0),我们通过一系列迭代来逐步逼近方程组的解。每一次迭代都会计算出一个新的近似解 (x1^k, x2^k, …, xn^k),以此类推,直到达到所需的精度为止。 具体的迭代公式为: [x^(k+1)] = [x^(k)] - [J_f(x^(k))]^-1 · [f(x^(k))] 其中,[x^(k)] 是第 k 次迭代所得的近似解,[J_f(x^(k))] 是方程组在 [x^(k)] 处的雅可比矩阵,[f(x^(k))] 是方程组在 [x^(k)] 处的函数值。 需要注意的是,牛顿迭代法的收敛性和初始点的选取有关,如果初始点选取不当,可能会导致迭代不收敛或者收敛速度非常慢。因此,在实际应用中,通常需要对初始点进行一定的调整和优化。 ### 回答2: 牛顿迭代法是一种常用的求解非线性方程组的数值方法。其基本思想是利用泰勒展开式将非线性方程组转化为线性方程组,从而通过迭代逼近方程组的解。 具体的迭代过程如下: 1. 选取一个初始解向量作为迭代的起点。 2. 对于每一次迭代,计算当前解向量的函数值和雅可比矩阵(即方程组的导数矩阵)的值。 3. 利用当前解向量和雅可比矩阵的值,通过求解线性方程组来更新解向量。 4. 重复2和3步骤,直到满足一定的终止条件(如迭代次数达到设定的最大值或解的相对误差小于给定精度)。 5. 最终得到一个近似的解向量,它满足非线性方程组。 牛顿迭代法的收敛性与初始解的选取有关,如果初始解离真实解较远,可能会出现迭代发散的情况。因此,初始解的选取需要合理。 牛顿迭代法在求解非线性方程组时具有较快的收敛速度,但也存在一定的局限性。它对于求解大规模方程组来说,需要计算和存储大量的雅可比矩阵,并且在每一次迭代中都需要求解线性方程组,计算量较大。此外,对于某些特殊的非线性方程组,牛顿迭代法可能会出现收敛失效的情况。 综上所述,牛顿迭代法是求解非线性方程组的一种有效方法,但在使用时需要注意初始解的选取和收敛性的保证。 ### 回答3: 牛顿迭代法是一种用于求解非线性方程组的数值方法。它基于牛顿法,利用函数的一阶导数和二阶导数来逼近方程组的解。 假设我们要求解一个非线性方程组,其中包含n个未知数和n个方程: F(x) = 0,其中x = (x1, x2, ..., xn)是未知数的向量,F(x) = (f1(x), f2(x), ..., fn(x))是方程组的向量函数。 牛顿迭代法的基本思想是:从一个初始点x0开始,通过不断迭代来逼近方程组的解。 具体的迭代过程是: 1. 计算方程组的雅可比矩阵J(x) = (∂f/∂x),其中∂f/∂x是f对x的一阶偏导数矩阵。 2. 在当前点xk处,计算方程组的函数值F(xk)和雅可比矩阵J(xk)。 3. 解一个线性方程组 J(xk)(xk+1 - xk) = -F(xk),求得方向向量Δxk = (xk+1 - xk)。 4. 更新当前点:xk+1 = xk + Δxk。 5. 重复步骤2-4,直到满足收敛条件。 牛顿迭代法的迭代次数通常比较少,收敛速度较快。但它需要计算方程组的雅可比矩阵,如果雅可比矩阵的计算比较复杂,就会增加计算的复杂度。 需要注意的是,牛顿迭代法可能会遇到奇点、发散或振荡等问题。为了提高算法的稳定性,可以使用改进的牛顿法,如拟牛顿法。 总之,牛顿迭代法是一种有效的求解非线性方程组的数值方法,它通过迭代逼近解,可以在较短的时间内得到较精确的结果。

相关推荐

最新推荐

recommend-type

牛顿迭代法解多元非线性方程程序与说明.docx

利用牛顿迭代法求解多元非线性方程组,包含MATLAB程序源码和运行结果。
recommend-type

二分法和牛顿迭代法求解方程

二分法和牛顿迭代法求解方程二分法和牛顿迭代法求解方程二分法和牛顿迭代法求解方程二分法和牛顿迭代法求解方程
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

HSV转为RGB的计算公式

HSV (Hue, Saturation, Value) 和 RGB (Red, Green, Blue) 是两种表示颜色的方式。下面是将 HSV 转换为 RGB 的计算公式: 1. 将 HSV 中的 S 和 V 值除以 100,得到范围在 0~1 之间的值。 2. 计算色相 H 在 RGB 中的值。如果 H 的范围在 0~60 或者 300~360 之间,则 R = V,G = (H/60)×V,B = 0。如果 H 的范围在 60~120 之间,则 R = ((120-H)/60)×V,G = V,B = 0。如果 H 的范围在 120~180 之间,则 R = 0,G = V,B =
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

已知自动控制原理中通过更高的频率特征来评估切割频率和库存——相位稳定。确定封闭系统的稳定性。求Wcp 和ψ已知W(p)=30•(0.1p+1)•(12.5p+1)/p•(10p+1)•(0.2p+1)•(p+1)

根据相位稳定的定义,我们需要找到一个频率 Wcp,使得相位满足 -ψ = -180°,即 ψ = 180°。此时系统的相位裕度为 0°,系统处于边缘稳定状态。 首先,我们需要将 W(p) 表示成极点和零点的形式。将分母和分子分别因式分解,得到: W(p) = 30 • (0.1p+1) • (12.5p+1) / [p • (10p+1) • (0.2p+1) • (p+1)] = 375p/(p+1) - 3750/(10p+1) + 750p/(0.2p+1) - 3750p/(10p+1) + 150p/(p+1) + 30 因此,系统的极点为 -1、-0.1、-0.2、