设计c语言程序求两个一元多项式的和。 输入格式: 输入分2行,每行分别先给出多项式非零项的个数,再以指数递降方式输入一个多项式非零项系数和指数。数字间以空格分隔。 输出格式: 输出1行,以指数递降方式输出和多项式非零项的系数和指数(保证不超过整数的表示范围)。数字间以空格分隔,但结尾不能有多余空格。零多项式应输出0 0。
时间: 2023-05-30 11:04:14 浏览: 212
思路:
首先读入两个多项式的信息,包括每个多项式的项数以及每个项的系数和指数。然后将两个多项式相加,并输出结果。
具体实现:
1.定义一个结构体Poly,用来存储每一项的系数和指数。
2.定义一个函数read_poly,用来读入一个多项式的信息。
3.定义一个函数add_poly,用来将两个多项式相加。
4.在主函数中调用read_poly函数读入两个多项式的信息,并调用add_poly函数将它们相加。
5.最后输出结果。
代码实现:
相关问题
7-2 c语言求两个一元多项式的和
在C语言中,如果你需要求解两个一元多项式(即多项式函数,如ax^n + bx^(n-1) + ... + c)的和,可以创建一个结构体表示每个多项式,包含系数数组和幂次信息。下面是一个简单的示例:
```c
#include <stdio.h>
#include <stdlib.h>
// 定义多项式结构
typedef struct {
int degree; // 次数
double* coefficients; // 系数数组
} Polynomial;
// 动态分配多项式内存
Polynomial* create_polynomial(int degree) {
Polynomial* poly = (Polynomial*)malloc(sizeof(Polynomial));
poly->degree = degree;
poly->coefficients = (double*)malloc(degree * sizeof(double));
return poly;
}
// 分配空间并设置多项式系数
void set_coefficient(Polynomial* poly, int exponent, double value) {
poly->coefficients[exponent] = value;
}
// 求和函数
Polynomial* add_polynomials(Polynomial* poly1, Polynomial* poly2) {
if (poly1->degree != poly2->degree) {
printf("两个多项式的次数不相等,无法直接相加。\n");
return NULL;
}
Polynomial* sum_poly = create_polynomial(poly1->degree);
for (int i = 0; i <= poly1->degree; ++i) {
sum_poly->coefficients[i] = poly1->coefficients[i] + poly2->coefficients[i];
}
return sum_poly;
}
// 打印多项式
void print_polynomial(Polynomial* poly) {
for (int i = 0; i <= poly->degree; ++i) {
if (poly->coefficients[i] != 0)
printf("%d: %.2f ", i, poly->coefficients[i]);
}
printf("\n");
}
int main() {
Polynomial* p1 = create_polynomial(3);
Polynomial* p2 = create_polynomial(3);
// 设置第一个多项式的系数
set_coefficient(p1, 2, 5); // a x^2
set_coefficient(p1, 1, 3); // b x
set_coefficient(p1, 0, 1); // c
// 设置第二个多项式的系数
set_coefficient(p2, 2, 2); // d x^2
set_coefficient(p2, 1, -4); // e x
set_coefficient(p2, 0, 7); // f
Polynomial* result = add_polynomials(p1, p2);
if (result != NULL) {
printf("两多项式之和为:\n");
print_polynomial(result);
free(result);
}
// 清理内存
free(p1);
free(p2);
return 0;
}
```
在这个例子中,`main` 函数中首先创建了两个多项式 `p1` 和 `p2`,然后设置了它们各自的系数。接着通过 `add_polynomials` 函数计算它们的和,并打印出来。注意,这个例子假设两个多项式的最高次数是一样的,如果不是,则需要先检查能否相加。
c语言求两个一元多项式的和顺序表
在C语言中,如果需要表示一元多项式并计算它们的和,可以使用顺序表(数组或链表)数据结构来存储各个项的系数和指数。这里我们假设使用数组作为基础结构。
首先,定义一个结构体`PolynomialTerm`表示多项式的每一项:
```c
typedef struct {
int coefficient; // 系数
int exponent; // 指数
} PolynomialTerm;
```
接着,定义一个数组`PolynomialSum`用于存放结果多项式的项:
```c
#define MAX_TERMS 10 // 最大多项式项数
PolynomialTerm polynomialSum[MAX_TERMS];
int numTermsSum = 0; // 结果多项式的项数
```
对于两个给定的一元多项式,你可以按照以下步骤求和:
1. 分别读取两个多项式的系数和指数,并将它们添加到`polynomialSum`数组中,直到满`MAX_TERMS`为止。
2. 对于超出数组长度的部分,需要额外处理。例如,可以创建一个新的数组,或者动态分配内存以适应更大的项数。
3. 如果多项式的次数相同,直接将对应位置的系数相加;若不同,保留次数较高项的系数,其余位补零。
4. 更新`numTermsSum`,记录结果多项式的实际项数。
下面是一个简单的函数示例,假设输入的多项式已经转换成合适的数据结构:
```c
void addPolynomials(PolynomialTerm* poly1, int terms1, PolynomialTerm* poly2, int terms2) {
for (int i = 0; i < terms1 && i < terms2; i++) {
polynomialSum[numTermsSum].coefficient = poly1[i].coefficient + poly2[i].coefficient;
polynomialSum[numTermsSum++].exponent = poly1[i].exponent;
}
// 如果其中一个多项式的次数更高...
if (terms1 > terms2) {
for (int i = terms2; i < terms1; i++) {
polynomialSum[numTermsSum].coefficient = poly1[i].coefficient;
polynomialSum[numTermsSum++].exponent = poly1[i].exponent;
}
} else if (terms2 > terms1) { // 否则交换条件
for (int i = terms1; i < terms2; i++) {
polynomialSum[numTermsSum].coefficient = poly2[i].coefficient;
polynomialSum[numTermsSum++].exponent = poly2[i].exponent;
}
}
}
```
阅读全文