C语言设计一个程序实现一元多项式相加

时间: 2023-05-29 13:01:55 浏览: 50
//C语言实现一元多项式相加 #include<stdio.h> #define MAXN 10010//多项式项数最大值 int a[MAXN], b[MAXN];//a,b两个数组分别存放两个多项式的系数,下标为指数 int main() { int n, m, x;//n,m分别为两个多项式的项数,x为当前项的指数 scanf("%d", &n); for(int i = 0; i < n; i++) { scanf("%d%d", &x, &a[x]);//存放多项式a的系数 } scanf("%d", &m); for(int i = 0; i < m; i++) { scanf("%d%d", &x, &b[x]);//存放多项式b的系数 } for(int i = 0; i < MAXN; i++) {//合并多项式 a[i] += b[i]; } int cnt = 0;//统计项数 for(int i = MAXN - 1; i >= 0; i--) { if(a[i] != 0) cnt++;//如果系数不为0,项数加1 } printf("%d", cnt); for(int i = MAXN - 1; i >= 0; i--) { if(a[i] != 0) {//如果系数不为0,输出该项 printf(" %d %.1lf", i, (double)a[i]);//注意保留一位小数 } } return 0; }

相关推荐

好的,我可以回答这个问题。单链表可以作为存储一元多项式的一种数据结构。相加两个一元多项式的方法是将两个一元多项式中相同次数的项相加,得到新的一元多项式。 具体步骤如下: 1. 定义一个单链表数据结构来存储一元多项式。 2. 读入两个一元多项式并分别存储到两个单链表中。 3. 遍历两个链表,将相同次数的项相加,将结果存储到一个新的链表中。 4. 如果一个链表遍历完了而另一个链表还有剩余的项,将这些项直接添加到新链表中。 5. 输出新链表中的每一项,即为相加的结果。 代码实现可参考下面示例: #include <stdio.h> #include <stdlib.h> typedef struct node { int coeff; //系数 int expn; //指数 struct node *next; } Node; Node* CreateList(); //创建链表 Node* InputPoly(); //输入一元多项式 void AddPoly(Node*, Node*, Node*); //相加两个一元多项式 void PrintPoly(Node*); //输出一元多项式 int main() { Node *A, *B, *C; A = InputPoly(); B = InputPoly(); C = CreateList(); AddPoly(A, B, C); PrintPoly(C); return 0; } Node* CreateList() { Node *L = (Node*)malloc(sizeof(Node)); L->next = NULL; return L; } Node* InputPoly() { Node *L = CreateList(); Node *r = L; int n, coeff, expn; printf("请输入一元多项式的项数:"); scanf("%d", &n); printf("请按照指数递减的顺序输入各项系数和指数:\n"); while(n--) { Node *p = (Node*)malloc(sizeof(Node)); scanf("%d%d", &coeff, &expn); p->coeff = coeff; p->expn = expn; r->next = p; r = p; } r->next = NULL; return L; } void AddPoly(Node *A, Node *B, Node *C) { Node *pa = A->next, *pb = B->next; Node *pc = C; while(pa && pb) { Node *p = (Node*)malloc(sizeof(Node)); if(pa->expn == pb->expn) { p->coeff = pa->coeff + pb->coeff; p->expn = pa->expn; pa = pa->next; pb = pb->next; if(p->coeff == 0) free(p); else { pc->next = p; pc = p; } } else if(pa->expn > pb->expn) { p->coeff = pa->coeff; p->expn = pa->expn; pa = pa->next; if(p->coeff == 0) free(p); else { pc->next = p; pc = p; } } else { p->coeff = pb->coeff; p->expn = pb->expn; pb = pb->next; if(p->coeff == 0) free(p); else { pc->next = p; pc = p; } } } pc->next = pa ? pa : pb; } void PrintPoly(Node *L) { Node *p = L->next; while(p) { printf("%dX^%d", p->coeff, p->expn); p = p->next; if(p) printf("+"); } printf("\n"); }
#include <stdio.h> #include <stdlib.h> struct node { // 定义节点结构体 int coef; // 系数 int exp; // 指数 struct node *next; // 指向下一个节点的指针 }; typedef struct node Node; Node* create_node(int coef, int exp) { // 创建一个节点 Node *new = (Node*)malloc(sizeof(Node)); new->coef = coef; new->exp = exp; new->next = NULL; return new; } Node* add_poly(Node *poly1, Node *poly2) { // 两个多项式相加 Node *head = create_node(0, 0); // 头结点,作为新的多项式的起点 Node *p1 = poly1, *p2 = poly2, *p3 = head; while (p1 != NULL && p2 != NULL) { if (p1->exp > p2->exp) { // 计算结果多项式的该项为第一个多项式的当前项 p3->next = create_node(p1->coef, p1->exp); p1 = p1->next; } else if (p1->exp < p2->exp) { // 计算结果多项式的该项为第二个多项式的当前项 p3->next = create_node(p2->coef, p2->exp); p2 = p2->next; } else { // 计算结果多项式的该项为两个多项式的当前项之和,系数相加 p3->next = create_node(p1->coef + p2->coef, p1->exp); p1 = p1->next; p2 = p2->next; } p3 = p3->next; } // 处理没有计算过的多项式项 while (p1 != NULL) { p3->next = create_node(p1->coef, p1->exp); p1 = p1->next; p3 = p3->next; } while (p2 != NULL) { p3->next = create_node(p2->coef, p2->exp); p2 = p2->next; p3 = p3->next; } return head->next; // 返回新的多项式 } void print_poly(Node *poly) { // 输出多项式 Node *p = poly; while (p != NULL) { printf("%dX^%d ", p->coef, p->exp); if (p->next != NULL && p->next->coef > 0) { printf("+ "); } p = p->next; } printf("\n"); } int main() { Node *poly1, *poly2, *result; // 创建第一个多项式 poly1 = create_node(3, 5); poly1->next = create_node(-2, 3); poly1->next->next = create_node(1, 1); // 创建第二个多项式 poly2 = create_node(2, 4); poly2->next = create_node(-7, 3); poly2->next->next = create_node(4, 1); result = add_poly(poly1, poly2); // 两个多项式相加 printf("多项式1:"); print_poly(poly1); // 输出第一个多项式 printf("多项式2:"); print_poly(poly2); // 输出第二个多项式 printf("相加结果:"); print_poly(result); // 输出相加结果 // 释放内存 while (poly1 != NULL) { Node *p = poly1; poly1 = poly1->next; free(p); } while (poly2 != NULL) { Node *p = poly2; poly2 = poly2->next; free(p); } while (result != NULL) { Node *p = result; result = result->next; free(p); } return 0; }
一元多项式相加是指将两个一元多项式相加得到一个新的一元多项式。在C语言中,可以使用单链表来实现一元多项式的存储和相加。具体实现步骤如下: 1. 定义一个结构体来表示一元多项式的每一项,包括系数和指数两个成员变量。 2. 定义一个单链表结构体来存储一元多项式,每个节点存储一项的系数和指数。 3. 编写函数来创建一元多项式,输入时逐项、按顺序输入一元多项式的系数、指数,输入系数为0时表述输入结束。 4. 编写函数来实现一元多项式相加,遍历两个链表,将相同指数的项相加,将结果存储在一个新的链表中。 5. 编写函数来输出一元多项式,遍历链表,按照指数从高到低的顺序输出每一项。 下面是一个简单的C语言实现示例: #include <stdio.h> #include <stdlib.h> // 定义一元多项式项的结构体 typedef struct PolyNode { int coef; // 系数 int expon; // 指数 struct PolyNode *next; } PolyNode, *Polynomial; // 创建一元多项式 Polynomial createPoly() { Polynomial p, rear, t; int c, e; p = (PolyNode *)malloc(sizeof(PolyNode)); p->next = NULL; rear = p; scanf("%d %d", &c, &e); while (c != 0) { t = (PolyNode *)malloc(sizeof(PolyNode)); t->coef = c; t->expon = e; t->next = NULL; rear->next = t; rear = t; scanf("%d %d", &c, &e); } return p; } // 一元多项式相加 Polynomial addPoly(Polynomial p1, Polynomial p2) { Polynomial front, rear, temp; int sum; rear = (PolyNode *)malloc(sizeof(PolyNode)); front = rear; while (p1 && p2) { if (p1->expon > p2->expon) { temp = (PolyNode *)malloc(sizeof(PolyNode)); temp->coef = p1->coef; temp->expon = p1->expon; temp->next = NULL; rear->next = temp; rear = temp; p1 = p1->next; } else if (p1->expon < p2->expon) { temp = (PolyNode *)malloc(sizeof(PolyNode)); temp->coef = p2->coef; temp->expon = p2->expon; temp->next = NULL; rear->next = temp; rear = temp; p2 = p2->next; } else { sum = p1->coef + p2->coef; if (sum != 0) { temp = (PolyNode *)malloc(sizeof(PolyNode)); temp->coef = sum; temp->expon = p1->expon; temp->next = NULL; rear->next = temp; rear = temp; } p1 = p1->next; p2 = p2->next; } } while (p1) { temp = (PolyNode *)malloc(sizeof(PolyNode)); temp->coef = p1->coef; temp->expon = p1->expon; temp->next = NULL; rear->next = temp; rear = temp; p1 = p1->next; } while (p2) { temp = (PolyNode *)malloc(sizeof(PolyNode)); temp->coef = p2->coef; temp->expon = p2->expon; temp->next = NULL; rear->next = temp; rear = temp; p2 = p2->next; } rear->next = NULL; temp = front; front = front->next; free(temp); return front; } // 输出一元多项式 void printPoly(Polynomial p) { if (!p) { printf("0 0\n"); return; } while (p) { printf("%d %d", p->coef, p->expon); p = p->next; if (p) { printf(" "); } else { printf("\n"); } } } int main() { Polynomial p1, p2, p3; p1 = createPoly(); p2 = createPoly(); p3 = addPoly(p1, p2); printPoly(p3); return 0; }
下面给出一个C语言程序实现两个一元多项式相乘的功能: c #include <stdio.h> #include <stdlib.h> #define MAXSIZE 100 typedef struct { float coef; // 系数 int expn; // 指数 } ElemType, PolyNode; typedef struct { PolyNode data[MAXSIZE]; int length; } PolyList; void CreatePoly(PolyList *L) { printf("请输入多项式的项数:"); scanf("%d", &L->length); printf("请按指数递减的顺序输入各项系数:\n"); for (int i = 0; i < L->length; i++) { scanf("%f%d", &L->data[i].coef, &L->data[i].expn); } } void PrintPoly(PolyList L) { printf("多项式为:"); for (int i = 0; i < L.length; i++) { if (i == 0) { printf("%.2f*x^%d", L.data[i].coef, L.data[i].expn); } else { printf(" + %.2f*x^%d", L.data[i].coef, L.data[i].expn); } } printf("\n"); } void AddPoly(PolyList *La, PolyList Lb) { int i, j, k; i = j = k = 0; while (i < La->length && j < Lb.length) { if (La->data[i].expn == Lb.data[j].expn) { La->data[i].coef += Lb.data[j].coef; i++; j++; } else if (La->data[i].expn < Lb.data[j].expn) { i++; } else { for (int n = La->length - 1; n >= i; n--) { La->data[n + 1] = La->data[n]; } La->data[i] = Lb.data[j]; La->length++; i++; j++; } } while (j < Lb.length) { La->data[i++] = Lb.data[j++]; La->length++; } } void MultiplyPoly(PolyList La, PolyList Lb, PolyList *Lc) { PolyNode temp[MAXSIZE]; int i, j, k, n; float temp_coef; Lc->length = 0; for (i = 0; i < La.length; i++) { for (j = 0; j < Lb.length; j++) { temp_coef = La.data[i].coef * Lb.data[j].coef; n = La.data[i].expn + Lb.data[j].expn; temp[n].coef += temp_coef; temp[n].expn = n; } } for (k = 0; k < MAXSIZE; k++) { if (temp[k].coef != 0) { Lc->data[Lc->length] = temp[k]; Lc->length++; } } } int main() { PolyList La, Lb, Lc; CreatePoly(&La); CreatePoly(&Lb); printf("\n"); PrintPoly(La); PrintPoly(Lb); AddPoly(&La, Lb); printf("\n"); PrintPoly(La); MultiplyPoly(La, Lb, &Lc); printf("\n"); PrintPoly(Lc); return 0; } 程序中使用了线性表来存储多项式,其中 PolyNode 结构体表示多项式的一项,PolyList 结构体表示整个多项式。程序中先输入两个多项式,然后将它们相加并输出,最后将它们相乘并输出。
以下是一元多项式相加的C语言数组实现: c #include <stdio.h> #include <stdlib.h> #define MAX_TERMS 101 // 多项式最多项数 typedef struct { float coef; // 系数 int exp; // 指数 } term; void poly_add(term a[], int na, term b[], int nb, term c[], int *nc) { int pa = 0, pb = 0, pc = 0; while (pa < na && pb < nb) { if (a[pa].exp == b[pb].exp) { float sum = a[pa].coef + b[pb].coef; if (sum != 0) { c[pc].coef = sum; c[pc].exp = a[pa].exp; pc++; } pa++; pb++; } else if (a[pa].exp > b[pb].exp) { c[pc].coef = a[pa].coef; c[pc].exp = a[pa].exp; pc++; pa++; } else { c[pc].coef = b[pb].coef; c[pc].exp = b[pb].exp; pc++; pb++; } } while (pa < na) { c[pc].coef = a[pa].coef; c[pc].exp = a[pa].exp; pc++; pa++; } while (pb < nb) { c[pc].coef = b[pb].coef; c[pc].exp = b[pb].exp; pc++; pb++; } *nc = pc; } void print_poly(term poly[], int n) { for (int i = 0; i < n; i++) { printf("%.2f", poly[i].coef); if (poly[i].exp == 0) { printf(" + "); } else if (poly[i].exp == 1) { printf("x + "); } else { printf("x^%d + ", poly[i].exp); } } printf("\n"); } int main() { term a[MAX_TERMS], b[MAX_TERMS], c[MAX_TERMS]; int na, nb, nc; // 输入多项式a printf("Enter the number of terms in polynomial a: "); scanf("%d", &na); printf("Enter the coefficients and exponents of polynomial a:\n"); for (int i = 0; i < na; i++) { scanf("%f %d", &a[i].coef, &a[i].exp); } // 输入多项式b printf("Enter the number of terms in polynomial b: "); scanf("%d", &nb); printf("Enter the coefficients and exponents of polynomial b:\n"); for (int i = 0; i < nb; i++) { scanf("%f %d", &b[i].coef, &b[i].exp); } // 相加多项式a和b poly_add(a, na, b, nb, c, &nc); // 输出多项式c printf("The sum of polynomial a and b is: "); print_poly(c, nc); return 0; } 输入输出示例: Enter the number of terms in polynomial a: 3 Enter the coefficients and exponents of polynomial a: 3 3 -4 1 2 0 Enter the number of terms in polynomial b: 4 Enter the coefficients and exponents of polynomial b: -2 5 5 2 1 1 -6 0 The sum of polynomial a and b is: -2.00x^5 + 3.00x^3 + 5.00x^2 - 3.00x - 4.00
以下是一元多项式相加的C语言代码: c #include <stdio.h> #include <stdlib.h> typedef struct node { int coefficient; // 系数 int exponent; // 指数 struct node *next; // 指向下一个节点的指针 } Node; // 创建一个节点 Node *createNode(int coefficient, int exponent) { Node *newNode = (Node *)malloc(sizeof(Node)); newNode->coefficient = coefficient; newNode->exponent = exponent; newNode->next = NULL; return newNode; } // 添加节点到多项式中 Node *addNode(Node *head, int coefficient, int exponent) { // 如果链表为空,创建一个新的节点作为头节点 if (head == NULL) { return createNode(coefficient, exponent); } // 遍历链表找到插入位置 Node *curr = head; while (curr->next != NULL && curr->next->exponent > exponent) { curr = curr->next; } // 如果指数相同,将系数相加 if (curr->exponent == exponent) { curr->coefficient += coefficient; } else { // 创建一个新节点并插入到链表中 Node *newNode = createNode(coefficient, exponent); newNode->next = curr->next; curr->next = newNode; } return head; } // 打印多项式 void printPolynomial(Node *head) { Node *curr = head; while (curr != NULL) { printf("%dx^%d", curr->coefficient, curr->exponent); if (curr->next != NULL) { printf(" + "); } curr = curr->next; } printf("\n"); } // 多项式相加 Node *addPolynomial(Node *poly1, Node *poly2) { // 创建一个新的链表头节点 Node *result = NULL; // 遍历两个多项式 Node *p1 = poly1, *p2 = poly2; while (p1 != NULL && p2 != NULL) { if (p1->exponent > p2->exponent) { result = addNode(result, p1->coefficient, p1->exponent); p1 = p1->next; } else if (p1->exponent < p2->exponent) { result = addNode(result, p2->coefficient, p2->exponent); p2 = p2->next; } else { result = addNode(result, p1->coefficient + p2->coefficient, p1->exponent); p1 = p1->next; p2 = p2->next; } } // 处理剩余部分 while (p1 != NULL) { result = addNode(result, p1->coefficient, p1->exponent); p1 = p1->next; } while (p2 != NULL) { result = addNode(result, p2->coefficient, p2->exponent); p2 = p2->next; } return result; } int main() { // 创建第一个多项式 Node *poly1 = NULL; poly1 = addNode(poly1, 3, 5); poly1 = addNode(poly1, 2, 3); poly1 = addNode(poly1, 5, 1); printf("第一个多项式:"); printPolynomial(poly1); // 创建第二个多项式 Node *poly2 = NULL; poly2 = addNode(poly2, 4, 4); poly2 = addNode(poly2, 1, 3); poly2 = addNode(poly2, 3, 2); poly2 = addNode(poly2, 4, 1); printf("第二个多项式:"); printPolynomial(poly2); // 计算两个多项式之和 Node *result = addPolynomial(poly1, poly2); printf("相加结果:"); printPolynomial(result); return 0; } 运行结果如下: 第一个多项式:3x^5 + 2x^3 + 5x^1 第二个多项式:4x^4 + 1x^3 + 3x^2 + 4x^1 相加结果:3x^5 + 4x^4 + 3x^3 + 3x^2 + 9x^1
一元多项式可以通过结构体来表示,结构体中包含两个成员变量,分别表示多项式的系数和指数。具体的C语言实现如下: typedef struct PolyNode { int coef; // 系数 int expon; // 指数 struct PolyNode *next; // 指向下一个节点的指针 } PolyNode, *Polynomial; 其中,Polynomial类型为指向PolyNode结构体的指针。 多项式的相加可以通过遍历两个多项式的链表来实现。具体的实现步骤如下: 1. 定义一个新链表,作为相加后的结果,初始化为NULL。 2. 遍历两个多项式的链表,依次进行以下操作: a. 如果当前节点的指数相同,则将系数相加,并将结果插入到新链表中。 b. 如果当前节点的指数不同,则将指数小的节点插入到新链表中,并将指针向后移动一位。 3. 将剩余的节点依次插入到新链表中。 4. 返回新链表作为相加后的结果。 具体的C语言实现如下: Polynomial add(Polynomial p1, Polynomial p2) { Polynomial result = NULL, tail = NULL; // 定义新链表及其尾指针 // 遍历两个链表 while (p1 && p2) { PolyNode *temp = (PolyNode *)malloc(sizeof(PolyNode)); // 创建新节点 if (p1->expon == p2->expon) { // 如果指数相同 temp->coef = p1->coef + p2->coef; // 系数相加 temp->expon = p1->expon; p1 = p1->next; // 指针向后移动一位 p2 = p2->next; } else if (p1->expon > p2->expon) { // 如果p1的指数更大 temp->coef = p1->coef; temp->expon = p1->expon; p1 = p1->next; } else { // 如果p2的指数更大 temp->coef = p2->coef; temp->expon = p2->expon; p2 = p2->next; } temp->next = NULL; // 将新节点插入到新链表中 if (!result) { result = tail = temp; } else { tail->next = temp; tail = temp; } } // 将剩余的节点插入到新链表中 while (p1) { PolyNode *temp = (PolyNode *)malloc(sizeof(PolyNode)); temp->coef = p1->coef; temp->expon = p1->expon; temp->next = NULL; if (!result) { result = tail = temp; } else { tail->next = temp; tail = temp; } p1 = p1->next; } while (p2) { PolyNode *temp = (PolyNode *)malloc(sizeof(PolyNode)); temp->coef = p2->coef; temp->expon = p2->expon; temp->next = NULL; if (!result) { result = tail = temp; } else { tail->next = temp; tail = temp; } p2 = p2->next; } return result; // 返回新链表作为相加后的结果 }
C语言中,一元多项式相加的实现可以通过链表来完成。首先需要定义一个结构体来表示多项式的每一项,包括系数和指数。然后可以使用链表来存储多项式,每个节点表示一个多项式的项。 具体实现可以按照以下步骤进行: 1. 定义一个结构体来表示多项式的每一项,包括系数和指数: c typedef struct PolyNode { float coef; // 系数 int exp; // 指数 struct PolyNode* next; // 指向下一项的指针 } PolyNode; 2. 定义一个函数来创建多项式链表,该函数可以根据用户输入的系数和指数创建一个新的节点,并将节点插入到链表中。可以使用循环来不断读取用户输入的系数和指数,直到用户输入结束。函数的定义如下: c PolyNode* createPolynomial() { PolyNode* head = NULL; // 头节点指针 PolyNode* tail = NULL; // 尾节点指针 // 循环读取用户输入的系数和指数,直到用户输入结束 // 在循环中创建节点,并将节点插入到链表中 // 最后返回链表的头节点指针 return head; } 3. 定义一个函数来实现多项式相加的功能。该函数可以将两个多项式链表作为参数,遍历两个链表,将对应指数相同的项的系数相加,得到结果多项式链表。函数的定义如下: c PolyNode* addPolynomials(PolyNode* p1, PolyNode* p2) { PolyNode* head = NULL; // 结果多项式链表的头节点指针 PolyNode* tail = NULL; // 结果多项式链表的尾节点指针 // 遍历两个链表,将对应指数相同的项的系数相加 // 创建新的节点,并将节点插入到结果链表中 return head; } 4. 在主函数中调用上述函数来实现一元多项式相加的功能。首先调用createPolynomial函数创建输入的多项式链表,然后调用addPolynomials函数将两个多项式相加,最后遍历结果链表并输出相加结果。 c int main() { PolyNode* p1 = createPolynomial(); // 创建第一个多项式链表 PolyNode* p2 = createPolynomial(); // 创建第二个多项式链表 PolyNode* result = addPolynomials(p1, p2); // 相加得到结果链表 // 遍历结果链表并输出结果 return 0; } 通过以上步骤,可以实现C语言中一元多项式相加的功能。注意,上述代码只是一个示例,具体实现可能还需要根据实际需求进行调整。另外,为了完善代码的健壮性,可能还需要添加一些错误处理的逻辑,比如对用户输入的数据进行验证等。
以下是一元多项式乘法的C语言实现: c #include <stdio.h> #include <stdlib.h> // 定义多项式结构体 typedef struct { int coef; // 系数 int expn; // 指数 } Elem; typedef struct { Elem *elems; // 项数组 int len; // 项数 } Poly; // 创建多项式 Poly createPoly(int len) { Poly p; p.elems = (Elem*)malloc(sizeof(Elem) * len); p.len = len; return p; } // 释放多项式 void freePoly(Poly *p) { free(p->elems); p->len = 0; } // 读取多项式 void readPoly(Poly *p) { printf("请输入多项式的项数:"); scanf("%d", &p->len); p->elems = (Elem*)malloc(sizeof(Elem) * p->len); printf("请输入多项式的每一项(系数和指数,以空格分隔):\n"); for (int i = 0; i < p->len; i++) { scanf("%d %d", &p->elems[i].coef, &p->elems[i].expn); } } // 打印多项式 void printPoly(Poly p) { for (int i = 0; i < p.len; i++) { printf("%dX^%d", p.elems[i].coef, p.elems[i].expn); if (i < p.len - 1) { printf(" + "); } } printf("\n"); } // 多项式乘法 Poly polyMul(Poly p1, Poly p2) { Poly res = createPoly(p1.len * p2.len); int k = 0; for (int i = 0; i < p1.len; i++) { for (int j = 0; j < p2.len; j++) { res.elems[k].coef = p1.elems[i].coef * p2.elems[j].coef; res.elems[k].expn = p1.elems[i].expn + p2.elems[j].expn; k++; } } // 合并同类项 for (int i = 0; i < res.len; i++) { for (int j = i + 1; j < res.len; j++) { if (res.elems[i].expn == res.elems[j].expn) { res.elems[i].coef += res.elems[j].coef; // 将该项删除,将数组前移 for (int l = j; l < res.len - 1; l++) { res.elems[l] = res.elems[l + 1]; } res.len--; // j指针回退 j--; } } } // 重新分配内存 res.elems = (Elem*)realloc(res.elems, sizeof(Elem) * res.len); return res; } int main() { Poly p1, p2, res; printf("请输入第一个多项式:\n"); readPoly(&p1); printf("请输入第二个多项式:\n"); readPoly(&p2); res = polyMul(p1, p2); printf("相乘的结果为:\n"); printPoly(res); freePoly(&p1); freePoly(&p2); freePoly(&res); return 0; } 这段代码首先定义了一个多项式的结构体,包括了一个项数组和项数。然后实现了创建、释放、读取和打印多项式的函数。 接下来是多项式乘法的核心代码。它首先创建一个结果多项式,其长度为两个多项式的项数之积。然后使用两层循环遍历两个多项式的每一项,将相乘的结果存入结果多项式中。最后再合并同类项,即将指数相同的项的系数相加,并删除其中一个项,将数组前移。 最后在main函数中调用相应的函数实现多项式乘法,并释放内存。
#include<stdio.h> #include<stdlib.h> // 定义多项式结构体 typedef struct Polynomial{ int coef; // 系数 int expn; // 指数 struct Polynomial *next; // 指向下一项的指针 }Polynomial; // 创建多项式 Polynomial* createPoly(){ Polynomial *head = (Polynomial*)malloc(sizeof(Polynomial)); // 头节点 head->next = NULL; Polynomial *p = head; // 指针p指向头节点 int n; // 项数 printf("请输入多项式项数:"); scanf("%d", &n); for(int i=0; i<n; i++){ Polynomial *node = (Polynomial*)malloc(sizeof(Polynomial)); // 新建节点 printf("请输入第%d项的系数和指数:", i+1); scanf("%d%d", &node->coef, &node->expn); node->next = NULL; p->next = node; // 将新节点插入到链表尾部 p = node; } return head; } // 显示多项式 void displayPoly(Polynomial *poly){ Polynomial *p = poly->next; // 指针p指向第一个节点 while(p){ printf("%dX^%d", p->coef, p->expn); p = p->next; if(p) printf("+"); } printf("\n"); } // 多项式相加 Polynomial* addPoly(Polynomial *poly1, Polynomial *poly2){ Polynomial *p1 = poly1->next; // 指针p1指向第一个节点 Polynomial *p2 = poly2->next; // 指针p2指向第一个节点 Polynomial *head = (Polynomial*)malloc(sizeof(Polynomial)); // 头节点 head->next = NULL; Polynomial *p = head; // 指针p指向头节点 while(p1 && p2){ if(p1->expn == p2->expn){ // 指数相等,系数相加 Polynomial *node = (Polynomial*)malloc(sizeof(Polynomial)); node->coef = p1->coef + p2->coef; node->expn = p1->expn; node->next = NULL; p->next = node; p = node; p1 = p1->next; p2 = p2->next; } else if(p1->expn > p2->expn){ // 第一个多项式指数大于第二个多项式指数 Polynomial *node = (Polynomial*)malloc(sizeof(Polynomial)); node->coef = p1->coef; node->expn = p1->expn; node->next = NULL; p->next = node; p = node; p1 = p1->next; } else{ // 第一个多项式指数小于第二个多项式指数 Polynomial *node = (Polynomial*)malloc(sizeof(Polynomial)); node->coef = p2->coef; node->expn = p2->expn; node->next = NULL; p->next = node; p = node; p2 = p2->next; } } while(p1){ // 第一个多项式还有剩余项 Polynomial *node = (Polynomial*)malloc(sizeof(Polynomial)); node->coef = p1->coef; node->expn = p1->expn; node->next = NULL; p->next = node; p = node; p1 = p1->next; } while(p2){ // 第二个多项式还有剩余项 Polynomial *node = (Polynomial*)malloc(sizeof(Polynomial)); node->coef = p2->coef; node->expn = p2->expn; node->next = NULL; p->next = node; p = node; p2 = p2->next; } return head; } int main(){ printf("请输入第一个多项式:\n"); Polynomial *poly1 = createPoly(); // 创建第一个多项式 printf("第一个多项式为:"); displayPoly(poly1); // 显示第一个多项式 printf("请输入第二个多项式:\n"); Polynomial *poly2 = createPoly(); // 创建第二个多项式 printf("第二个多项式为:"); displayPoly(poly2); // 显示第二个多项式 Polynomial *result = addPoly(poly1, poly2); // 两个多项式相加 printf("两个多项式相加后的结果为:"); displayPoly(result); // 显示相加后的结果 return 0; }
#include <stdio.h> #include <stdlib.h> #define MAX_DEGREE 100 // 多项式最大次数 typedef struct { int degree; // 多项式次数 int coef[MAX_DEGREE + 1]; // 多项式系数,下标对应次数 } Polynomial; // 初始化多项式 void initPoly(Polynomial *poly) { int i; poly->degree = 0; for (i = 0; i <= MAX_DEGREE; i++) { poly->coef[i] = 0; } } // 输入多项式 void inputPoly(Polynomial *poly) { int i; printf("请输入多项式的次数:"); scanf("%d", &poly->degree); printf("请输入多项式的系数(从高到低):"); for (i = poly->degree; i >= 0; i--) { scanf("%d", &poly->coef[i]); } } // 输出多项式 void outputPoly(Polynomial *poly) { int i; printf("多项式为:"); for (i = poly->degree; i >= 0; i--) { if (poly->coef[i] != 0) { if (i == poly->degree) { printf("%d", poly->coef[i]); } else if (i == 0) { if (poly->coef[i] > 0) { printf("+%d", poly->coef[i]); } else if (poly->coef[i] < 0) { printf("%d", poly->coef[i]); } } else { if (poly->coef[i] > 0) { printf("+%dx^%d", poly->coef[i], i); } else if (poly->coef[i] < 0) { printf("%dx^%d", poly->coef[i], i); } } } } printf("\n"); } // 多项式相加 Polynomial addPoly(Polynomial *p1, Polynomial *p2) { Polynomial sum; int i; initPoly(&sum); sum.degree = (p1->degree > p2->degree) ? p1->degree : p2->degree; for (i = 0; i <= sum.degree; i++) { sum.coef[i] = p1->coef[i] + p2->coef[i]; } return sum; } int main() { Polynomial p1, p2, sum; initPoly(&p1); initPoly(&p2); initPoly(&sum); printf("请输入第一个多项式:\n"); inputPoly(&p1); outputPoly(&p1); printf("请输入第二个多项式:\n"); inputPoly(&p2); outputPoly(&p2); sum = addPoly(&p1, &p2); printf("两个多项式相加的结果为:\n"); outputPoly(&sum); return 0; }
#include <stdio.h> #include <stdlib.h> struct node { int coef; // 系数 int exp; // 指数 struct node *next; // 下一个节点指针 }; typedef struct node Node; typedef Node *NodePtr; // 创建一个新节点 NodePtr createNode(int coef, int exp) { NodePtr node = (NodePtr) malloc(sizeof(Node)); node->coef = coef; node->exp = exp; node->next = NULL; return node; } // 插入一个节点到多项式中 void insertNode(NodePtr *head, NodePtr node) { if (*head == NULL) { *head = node; } else { NodePtr cur = *head; while (cur->next != NULL) { cur = cur->next; } cur->next = node; } } // 打印多项式 void printList(NodePtr head) { while (head != NULL) { printf("%dx^%d", head->coef, head->exp); if (head->next != NULL) { printf(" + "); } head = head->next; } printf("\n"); } // 释放多项式的所有节点 void freeList(NodePtr head) { NodePtr cur = head; while (head != NULL) { cur = head; head = head->next; free(cur); } } // 一元多项式加法运算 NodePtr add(NodePtr p1, NodePtr p2) { NodePtr head = NULL; while (p1 != NULL && p2 != NULL) { if (p1->exp == p2->exp) { // 指数相同,系数相加 int coef = p1->coef + p2->coef; if (coef != 0) { // 如果系数不为0,插入新节点 insertNode(&head, createNode(coef, p1->exp)); } p1 = p1->next; p2 = p2->next; } else if (p1->exp > p2->exp) { // p1的指数更大,插入p1的节点 insertNode(&head, createNode(p1->coef, p1->exp)); p1 = p1->next; } else { // p2的指数更大,插入p2的节点 insertNode(&head, createNode(p2->coef, p2->exp)); p2 = p2->next; } } // 处理剩余节点 while (p1 != NULL) { insertNode(&head, createNode(p1->coef, p1->exp)); p1 = p1->next; } while (p2 != NULL) { insertNode(&head, createNode(p2->coef, p2->exp)); p2 = p2->next; } return head; } int main() { // 多项式1: 3x^3 + 2x^2 + x^0 NodePtr p1 = createNode(3, 3); insertNode(&p1, createNode(2, 2)); insertNode(&p1, createNode(1, 0)); printf("p1 = "); printList(p1); // 多项式2: 4x^4 + 2x^2 + 1x^0 NodePtr p2 = createNode(4, 4); insertNode(&p2, createNode(2, 2)); insertNode(&p2, createNode(1, 0)); printf("p2 = "); printList(p2); // 多项式加法 NodePtr p3 = add(p1, p2); printf("p3 = "); printList(p3); // 释放内存 freeList(p1); freeList(p2); freeList(p3); return 0; }
#include <stdio.h> #include <stdlib.h> typedef struct PolyNode *Polynomial; struct PolyNode{ int coef; // 系数 int expon; // 指数 Polynomial link; // 下一项 }; void Attach(int c, int e, Polynomial *pRear){ Polynomial P; // 新建节点 P = (Polynomial)malloc(sizeof(struct PolyNode)); P->coef = c; P->expon = e; P->link = NULL; // 插入节点 (*pRear)->link = P; *pRear = P; } Polynomial PolyAdd(Polynomial P1, Polynomial P2){ Polynomial P, Rear, t1, t2; int sum; // 新建头节点 P = (Polynomial)malloc(sizeof(struct PolyNode)); Rear = P; t1 = P1->link; t2 = P2->link; while(t1 && t2){ if(t1->expon == t2->expon){ // 指数相等 sum = t1->coef + t2->coef; if(sum) // 系数不为0 Attach(sum, t1->expon, &Rear); t1 = t1->link; t2 = t2->link; } else if(t1->expon > t2->expon){ // P1中指数较大 Attach(t1->coef, t1->expon, &Rear); t1 = t1->link; } else{ // P2中指数较大 Attach(t2->coef, t2->expon, &Rear); t2 = t2->link; } } // 将未处理完的项接到结果多项式中 for(; t1; t1 = t1->link) Attach(t1->coef, t1->expon, &Rear); for(; t2; t2 = t2->link) Attach(t2->coef, t2->expon, &Rear); // 删除头节点 Rear->link = NULL; P = P->link; free(P1); free(P2); return P; } void PrintPoly(Polynomial P){ if(!P){ printf("0 0\n"); return; } while(P){ printf("%d %d", P->coef, P->expon); P = P->link; if(P) printf(" "); } printf("\n"); } int main(){ Polynomial P1, P2, PP, PS; // 新建多项式P1 P1 = (Polynomial)malloc(sizeof(struct PolyNode)); P1->link = NULL; Attach(5, 0, &P1); Attach(2, 1, &P1); Attach(-3, 2, &P1); // 新建多项式P2 P2 = (Polynomial)malloc(sizeof(struct PolyNode)); P2->link = NULL; Attach(7, 1, &P2); Attach(-2, 2, &P2); Attach(4, 4, &P2); // 输出多项式P1和P2 printf("P1: "); PrintPoly(P1); printf("P2: "); PrintPoly(P2); // 多项式相加 PP = PolyAdd(P1, P2); // 输出相加结果 printf("P1 + P2: "); PrintPoly(PP); return 0; }

最新推荐

用C语言设计并实现一个一元稀疏多项式的简单计算器

数据结构的一个实验,用C语言设计并实现一个一元稀疏多项式的简单计算器 输入并建立多项式输出多项式,序列按指数降序排列多项式A(x)和B(x)相加,并建立多项式A(x)+B(x)多项式A(x)和B(x)相减,并建立多项式A(x)-B...

基于at89c51单片机的-智能开关设计毕业论文设计.doc

基于at89c51单片机的-智能开关设计毕业论文设计.doc

"蒙彼利埃大学与CNRS联合开发细胞内穿透载体用于靶向catphepsin D抑制剂"

由蒙彼利埃大学提供用于靶向catphepsin D抑制剂的细胞内穿透载体的开发在和CNRS研究单位- UMR 5247(马克斯·穆塞隆生物分子研究专长:分子工程由Clément Sanchez提供于2016年5月26日在评审团面前进行了辩护让·吉隆波尔多大学ARNA实验室CNRS- INSERM教授报告员塞巴斯蒂安·帕波特教授,CNRS-普瓦捷大学普瓦捷介质和材料化学研究所报告员帕斯卡尔·拉斯特洛教授,CNRS-审查员让·马丁内斯蒙彼利埃大学Max Mousseron生物分子研究所CNRS教授审查员文森特·利索夫斯基蒙彼利埃大学Max Mousseron生物分子研究所CNRS教授论文主任让-弗朗索瓦·赫尔南德斯CNRS研究总监-蒙彼利埃大学Max Mousseron生物分子研究论文共同主任由蒙彼利埃大学提供用于靶向catphepsin D抑制剂的细胞内穿透载体的开发在和CNRS研究单位- UMR 5247(马克斯·穆塞隆生物分子研究专长:分子工程由Clément Sanchez提供�

设计一个程序有一个字符串包含n个字符 写一个函数 将此字符串中从第m个字符开始的全部字符复制成为另一个字符串 用指针c语言

以下是用指针实现将字符串中从第m个字符开始的全部字符复制成为另一个字符串的C语言程序: ```c #include <stdio.h> #include <stdlib.h> #include <string.h> void copyString(char *a, char *b, int n, int m); int main() { int n, m; char *a, *b; printf("请输入字符串长度n:"); scanf("%d", &n); a = (char*)malloc(n * sizeof(char)); b =

基于C#多机联合绘图软件的实现-毕业设计论文.doc

基于C#多机联合绘图软件的实现-毕业设计论文.doc

4G车载网络中无线电资源的智能管理

4G车载网络中无线电资源的智能管理汽车网络从4G到5G的5G智能无线电资源管理巴黎萨克雷大学博士论文第580号博士学院博士专业:网络、信息与通信研究单位:巴黎萨克雷大学,UVSQ,LI PARAD,78180,法国伊夫林省圣昆廷参考:凡尔赛大学-伊夫林省圣昆廷论文于11月30日在巴黎萨克雷发表并答辩2021年,由玛丽亚姆·阿卢奇·马迪陪审团组成Pascal Lorenz总裁上阿尔萨斯大学大学教授Mohamed Yacine Ghamri-Doudane拉罗谢尔大学报告员和审查员教授Rami Langar报告员和审查员马恩河谷大学Oyunchimeg SHAGDARVEDECOM研发(HDR)团队负责人审查员论文方向Samir TOHME博士生导师巴黎萨克雷大学名誉教授UVSQ/LI- PARADKALLEL KHEMIRI共同监督巴黎萨克雷UVSQ/大卫Guy Pujolle受邀索邦大学Tara Yahiya邀请巴黎萨克雷大学/LISN高级讲师(HDR)博士论文NNT:2021UPASG061谢谢你首先,我要感谢我的论文导师M.萨米�

mysql建表是的约束

在MySQL中,可以通过约束来保证表中数据的完整性和一致性。常见的约束有主键约束、唯一约束、非空约束和外键约束等。下面是MySQL建表时的约束介绍: 1. 主键约束:主键是一种特殊的唯一约束,它能够唯一确定一张表中的一条记录。在MySQL中,可以通过以下两种方式添加主键约束: ①在创建表时添加主键约束: ```mysql CREATE TABLE user ( id INT PRIMARY KEY, # 添加主键约束 name VARCHAR(20), age INT ); ``` ②在创建表后添加主键约束: ```mysql ALTER TABLE use

XX畜牧有限公司信息化项目实施方案.doc

XX畜牧有限公司信息化项目实施方案.doc

DOCT或AT:工程与计算机科学博士学位的域特定语言解决物联网系统的假数据注入攻击

这是由DOCT或AT从E't公关E'P ARE'在弗朗什-孔德E'大学第37章第一次见面工程与微技术科学计算机科学博士学位[美]马修·B·里兰德著在工业环境中使用域特定语言解决物联网系统中的假数据注入攻击在Conte e xte indust r iel中使用e'di '语言解决通过向物联网系统注入虚假捐赠进行的攻击2021年5月28日,在贝桑举行的评审团会议上:BOUQUETFABRICEProfesseuraThe'se总监GUIOT YOHann来自Flowbird集团的审查员LETRAONYVESProa'Uni v ersiteLEGEARDBRUNOProfesseura'PARISSISIOANNISProfesseura'Uni v ersit e' de Greno b le AlpesNX X X一个已知的基因首先,我想感谢我的直接和我的心的E 谢谢也是一个所有成员GeLeaD和SARCoS团队,让我有在一个大的设备中享受研究的乐趣。我感谢YvesLeTraon和IoanisPa rissi s,他们同意重读这篇文章,并成为它的作者。我感谢B runoLegeard和YohannGuiot在本文件的辩护期间接受并成为xaminators。感谢

data:{ "id": "序", "feeding_age": "日龄(天)", "feeding_total_feeding": "日总饲喂量(L)", "feeding_up": "早占比(%)", "remark": "备注", }微信小程序中怎么去掉data中的id

可以使用Python中的字典操作来去掉data中的id。具体方法如下所示: ```python data = { "id": "序", "feeding_age": "日龄(天)", "feeding_total_feeding": "日总饲喂量(L)", "feeding_up": "早占比(%)", "remark": "备注", } data.pop("id") # 删除id键值对 print(data) # 输出:{'feeding_age': '日龄(天)', 'feeding_total_feeding': '日总饲喂量(L)', 'fe