for (i = 0; i < g->vexnum; i++) { for (j = 0; j < g->vexnum; j++) { g->arcs[i][j] = MaxInt; } } printf("Enter the edge information:\n"); for (i = 0; i < g->arcnum; i++) { int v1, v2, w; printf("Edge %d (v1 v2 weight): ", i); scanf("%d %d %d", &v1, &v2, &w); g->arcs[v1][v2] = w; }这段C语言代码怎么改

时间: 2024-04-06 21:35:09 浏览: 8
这段代码的功能是初始化一个邻接矩阵,并从用户处输入边的信息,然后将权值存储在相应的邻接矩阵元素中。如果要改变这段代码的功能,需要知道需要实现什么功能。 如果需要修改输入的边信息,可以在第二个for循环中修改scanf函数的参数,使其输入其他边信息。如果需要修改邻接矩阵的初始化方法,可以修改第一个for循环中的初始化方式。
相关问题

void MiniSpanTree_Prim(AMGraph* G, int u) { int k = 0; k = LocateVex(G, u); for (int j = 0; j < G->vexnum; j++) { if (j != k) closedge[j] = { u,G->arcs[k][j] }; } closedge[k].lowcost = 0; for (int i = 0; i < G->vexnum; i++) { k = Min(closedge); int u0 = closedge[k].adjvex; int v0 = G->vexs[k]; printf("%d %d", u0, v0); closedge[k].lowcost = 0; for (int j = 0; j < G->vexnum; j++) { if (G->arcs[i][j] < closedge[j].lowcost) { closedge[i] = { G->vexs[k],G->arcs[i][j] }; } } } }

以下是将该段代码转换为C语言的代码: ```c void MiniSpanTree_Prim(AMGraph* G, int u) { int k = 0; k = LocateVex(G, u); for (int j = 0; j < G->vexnum; j++) { if (j != k) { closedge[j].adjvex = u; closedge[j].lowcost = G->arcs[k][j]; } } closedge[k].lowcost = 0; for (int i = 0; i < G->vexnum; i++) { k = Min(closedge); int u0 = closedge[k].adjvex; int v0 = G->vexs[k]; printf("%d %d", u0, v0); closedge[k].lowcost = 0; for (int j = 0; j < G->vexnum; j++) { if (G->arcs[i][j] < closedge[j].lowcost) { closedge[j].adjvex = G->vexs[k]; closedge[j].lowcost = G->arcs[i][j]; } } } } ```

#include<iostream> using namespace std; typedef struct{ char* vexs; int** arcs; int vexNum; int arcNum; }Graph; Graph* initGraph(int vexNum) { Graph* G = new Graph; G->arcs = new int*;G->vexs = new char; for(int i = 0;i<vexNum;i++) G->arcs[i] = new int; G->arcNum = 0; G->vexNum = vexNum; return G; } void createGraph(Graph* G,char* vexs,int* arcs) { for(int i = 0;i<G->vexNum;i++) { G->vexs[i] = vexs[i]; for(int j = 0;j<G->vexNum;j++) { G->arcs[i][j] = *(arcs+i*G->vexNum+j); if(G->arcs[i][j]) G->arcNum++; } } G->arcNum=2;//无向图 } void dfs(Graph* G,int* visited,int index) { cout<<G->vexs[index]<<'\t'; visited[index] = 1; for(int i = 0;i<G->vexNum;i++) { if(!visited[i] && G->arcs[index][i]) dfs(G,visited,i); } } void test1() { Graph* G = initGraph(5); char vexs[6] = "ABCDE"; int arcs[5][5] = { 0,1,1,1,0, 1,0,1,1,1, 1,1,0,0,0, 1,1,0,0,1, 0,1,0,1,0 }; createGraph(G,vexs,(int*)arcs); int visited[6] = {0}; dfs(G,visited,0); } int main() { test1(); return 0; }

这段代码实现了一个无向图的深度优先搜索算法。代码中使用了一个自定义的结构体 `Graph` 来表示图的结构,其中包含了顶点集合 `vexs`、邻接矩阵 `arcs`、顶点数 `vexNum` 和边数 `arcNum`。 在 `initGraph` 函数中,通过动态分配内存创建了一个 `Graph` 对象,并初始化了邻接矩阵和顶点数。 在 `createGraph` 函数中,根据传入的顶点集合和邻接矩阵数据,将数据复制到图的对应位置,并计算边数。 在 `dfs` 函数中,实现了深度优先搜索算法。从给定的起始顶点开始,遍历与其相邻且未访问过的顶点,并递归调用 `dfs` 函数进行继续搜索。 最后,在 `test1` 函数中,创建了一个具有 5 个顶点的图,并使用深度优先搜索算法进行遍历,输出遍历结果。 需要注意的是,这段代码中存在一些问题,比如在动态分配内存时,没有正确分配数组的空间。下面是修复后的代码: ```cpp #include<iostream> using namespace std; typedef struct { char* vexs; int** arcs; int vexNum; int arcNum; } Graph; Graph* initGraph(int vexNum) { Graph* G = new Graph; G->arcs = new int*[vexNum]; G->vexs = new char[vexNum]; for (int i = 0; i < vexNum; i++) G->arcs[i] = new int[vexNum]; G->arcNum = 0; G->vexNum = vexNum; return G; } void createGraph(Graph* G, char* vexs, int* arcs) { for (int i = 0; i < G->vexNum; i++) { G->vexs[i] = vexs[i]; for (int j = 0; j < G->vexNum; j++) { G->arcs[i][j] = *(arcs + i * G->vexNum + j); if (G->arcs[i][j]) G->arcNum++; } } G->arcNum /= 2; // 无向图,边数需要除以2 } void dfs(Graph* G, int* visited, int index) { cout << G->vexs[index] << '\t'; visited[index] = 1; for (int i = 0; i < G->vexNum; i++) { if (!visited[i] && G->arcs[index][i]) dfs(G, visited, i); } } void test1() { Graph* G = initGraph(5); char vexs[5] = { 'A', 'B', 'C', 'D', 'E' }; int arcs[5][5] = { {0, 1, 1, 1, 0}, {1, 0, 1, 1, 1}, {1, 1, 0, 0, 0}, {1, 1, 0, 0, 1}, {0, 1, 0, 1, 0} }; createGraph(G, vexs, (int*)arcs); int visited[5] = { 0 }; dfs(G, visited, 0); } int main() { test1(); return 0; } ``` 这样修复后的代码可以正确创建图的结构,并实现深度优先搜索算法进行遍历。

相关推荐

#include<stdio.h> #include<stdlib.h> Typedef struct Graph{ Char* vexs; Int** arcs; Int vexnum,arcnum; )Graph; Graph* initGraph(int vexnum){ Graph* G=(Graph*)malloc(sizeof(Graph)) G->vexs=(char*)malloc(sizeof (char)*vexnum) G->arcs=(int**)malloc(sizeof (int*)*vexnum) For(int i=0;i<vexnum;I++) { G->arcs[i]= (int*)malloc(sizeof (int)*vexnum)} G->vexnum=Vexnum; G->arcnum=0; Return G } Int createGraph(Graph* G,char* vexs,int* arcs) {for(i=0;i<G->vexnum;i++) G->vexs[i]=vexs[i]; For((j=0;j<G->vexnum;j++) G->arcs[i][j]=*(arcs+i*vexnum+j ) If(G->arcs[i][j]!=0) G->arcnum++; } G->arcnum/=2; } Void DFS(Graph* G,int *visit,int index){ Printf("%c",G->vexs[index]) Visit[index]=1; For(int i=0;i<G->vexnum;i++) If(G->arcs[index][i]==1&&visit[index]!=1) DFS(G,visit,i) } Void BFS(Graph* G,int *visit ,int index){ Printf("%c",&G->vexs[index]) Visit[index]=1; Queue* initQueue(); enQueue(Q,index); while(!isEmpty(Q)) int i=deQueue(); For(int j=0;j<G->vexnum;J++) If(G->arcs[i][j]==1&&!visit[j]) Printf("%c",G->vexs[j]) Visit[j]=1; enQueue(Q,j);} } #define MAXSIZE 5 Typedef struct Queue{ Int front Int rear Int data[MAXSIZE] }Queue; Queue* Q InitQueue() { Queue* Q=(Queue*)malloc(sizeof(QUeue)); Queue->front=Queue->rear=0; Return Q; } Int enQueue(Queue* Q, int data) If (isFull(Q)){ Return 0} Else Q->data[Q->rear]=data; Q->rear=(Q->rear+1)%MAXSIZE } Int deQueue(Queue* Q) If (isempty(Q)){ Return 0} Else Int data=Q->data[Q->front]; Q->front=(Q->front+1)%MAXSIZE Return data; } Void printfQueue(Queue* Q){ Int length=(Q->rea-Q->front+MAXSIZE)%MAXSIZE For(int i=0;i<length;i++) Printf("%d->",Q->data[Q->front]) Q->front=(Q->front+1)%MAXSIZE; Int main(){ Graph* G=initGraph(5); Int arcs[5][5]={ 0,1,1,1,0, 0,1,1,1,0, 0,1,1,1,0, 0,1,1,1,0, 0,1,1,1,0, }; CreateGraph(*G,"ABCDE",(int*)arcs); Int* visit=(int*)malloc(sizeof(int)*G->vexnum); For(int i=0;i<G->vexnum;i++) Visit[i]=0; DFS(G,visit,0); BFS(G,visit,0) }修改正确并转化为c语言代码

7-20 有向图输出入度为0顶点 分数 6 作者 DS课程组 单位 临沂大学 本题要求实现一个函数,输出有向图所有入度为0的顶点。 函数接口定义: void PrintV(MGraph G); G为采用邻接矩阵作为存储结构的有向图。 裁判测试程序样例: #include <stdio.h> #define MVNum 100 //最大顶点数 typedef struct { char vexs[MVNum]; //存放顶点的一维数组 int arcs[MVNum][MVNum]; //邻接矩阵 int vexnum, arcnum; //图的当前顶点数和弧数 }MGraph; void PrintV(MGraph G); void CreatMGraph(MGraph *G);/* 创建图 */ int main() { MGraph G; CreatMGraph(&G); PrintV(G); return 0; } void CreatMGraph(MGraph *G) { int i, j, k; scanf("%d%d", &G->vexnum, &G->arcnum); getchar(); for (i = 0; i < G->vexnum; i++) scanf("%c", &G->vexs[i]); for (i = 0; i < G->vexnum; i++) for (j = 0; j < G->vexnum; j++) G->arcs[i][j] = 0; for (k = 0; k < G->arcnum; k++) { scanf("%d%d", &i, &j); G->arcs[i][j] = 1; } } /* 你的代码将被嵌在这里 */ 输入样例: 例如有向图 有向图.png 第一行给出图的顶点数n和弧数e。第二行给出n个字符,表示n个顶点的数据元素的值。后面是e行,给出每一条弧的两个顶点编号。 4 5 ABCD 1 0 2 0 2 1 3 2 3 1 输出样例: 输出为两行,第一行为入度为0的顶点个数,第二行按照输入顺序输出所有入度为0的顶点元素值。顶点的元素值为字符型,输出格式为每个字符后面跟一个空格。如果没有入度为0的顶点,则输出只有一行,个数为0。 1 D

完善代码:#include <stdio.h> #include <stdlib.h> #define INF 50 typedef struct ArcNode{ int adjvex;//该弧所指向的顶点位置 struct ArcNode *nextarc;//下一个临接点 int weight;//弧的权重 }ArcNode;//表结点 typedef struct VNode{ char data; //顶点信息 ArcNode *firstarc;//指向下一个结点. }VNode,AdjList[6]; typedef struct{ AdjList LH;//创建头结点数组 int vexnum;//图的点的个数 int arcnum;//图的边的个数 }Graph; typedef struct{ char nextvex; int lowcost; int know; }Auxiliary_array;//辅助数组结构体 voidmain (void){ void buildtu (Graph*); void printgraph(Graph*); void prim( Graph *G, char u); char u; Graph UDG; Graph *G = &UDG; buildtu(G); printgraph(G);//打印图 printf("请输入起始顶点: \n"); while(getchar()!=')n'); u = getchar(); prim(G,u); } void buildtu (Graph*G) { //建图 int search(Graph *G,char a); int i,n1,n2,w;char a,b; ArcNode *p, *q; printf("请输入顶点个数和边的条数: \n"); scanf("%d %d",&G->vexnum,&G->arcnum); printf("请输入顶点信息\n"); for (i= 0;i< G->vexnum; ++i){ while (getchar()!='\n'); scanf("%c" ,&G->LH[i].data); G->LH[i].firstarc = NULL; } printf(" 请输入有关系的结点和该边的权重:\n");for(i=0;i<G->arcnum;++i){ while (getchar()!='\n'); scanf("%c %c %d",&a,&b,&w); n1=search(G,a); n2=search(G,b); p=G->LH[n1].firstarc; if(p == NULL){ p=G->LH[n1].firstarc=(ArcNode *) malloc (sizeof(ArcNode)); } else{ while(p->nextarc!=NULL){ p=p->nextarc; } p=p->nextarc=(ArcNode*)malloc(sizeof(ArcNode)); }

最新推荐

recommend-type

grpcio-1.47.0-cp310-cp310-linux_armv7l.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

小程序项目源码-美容预约小程序.zip

小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序v
recommend-type

MobaXterm 工具

MobaXterm 工具
recommend-type

grpcio-1.48.0-cp37-cp37m-linux_armv7l.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

扁平风格PPT可修改ppt下载(11).zip

扁平风格PPT可修改ppt下载(11).zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】MATLAB用遗传算法改进粒子群GA-PSO算法

![MATLAB智能算法合集](https://static.fuxi.netease.com/fuxi-official/web/20221101/83f465753fd49c41536a5640367d4340.jpg) # 2.1 遗传算法的原理和实现 遗传算法(GA)是一种受生物进化过程启发的优化算法。它通过模拟自然选择和遗传机制来搜索最优解。 **2.1.1 遗传算法的编码和解码** 编码是将问题空间中的解表示为二进制字符串或其他数据结构的过程。解码是将编码的解转换为问题空间中的实际解的过程。常见的编码方法包括二进制编码、实数编码和树形编码。 **2.1.2 遗传算法的交叉和
recommend-type

openstack的20种接口有哪些

以下是OpenStack的20种API接口: 1. Identity (Keystone) API 2. Compute (Nova) API 3. Networking (Neutron) API 4. Block Storage (Cinder) API 5. Object Storage (Swift) API 6. Image (Glance) API 7. Telemetry (Ceilometer) API 8. Orchestration (Heat) API 9. Database (Trove) API 10. Bare Metal (Ironic) API 11. DNS
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。