#include "stm32f10x.h" #include <stdio.h> #define BUFFER_SIZE 2 char rx_buffer[BUFFER_SIZE]; int rx_index = 0; void USART1_IRQHandler(void) { if (USART_GetITStatus(USART1, USART_IT_RXNE) != RESET) { char ch = USART_ReceiveData(USART1); // 判断是否为需要存储的字符 if (ch == 'a' || ch == 'b') { rx_buffer[rx_index++] = ch; // 如果已经存储了两个字符,则重置计数器 if (rx_index >= BUFFER_SIZE) { rx_index = 0; } } } }
时间: 2024-02-10 07:34:00 浏览: 70
这段代码是针对STM32单片机使用USART1串口接收数据的中断处理函数。当USART1接收到数据时,会触发USART1_IRQHandler中断处理函数。在该函数中,首先使用USART_GetITStatus函数判断是否为接收中断,并且USART_IT_RXNE表示接收寄存器非空中断。如果是接收中断,则使用USART_ReceiveData函数读取接收寄存器中的数据,并将其存储在变量ch中。
接着判断变量ch是否为需要存储的字符,即'a'或'b'。如果是,则将其存储在数组rx_buffer中,并将rx_index计数器加1。如果已经存储了两个字符,则重置计数器rx_index为0,以便下一次接收数据。
注意,这段代码中使用了宏定义BUFFER_SIZE来定义rx_buffer数组的大小,即缓冲区的大小。在此例中,缓冲区大小为2,因此只能存储两个字符。如果需要存储更多的字符,需要相应地调整缓冲区大小。
相关问题
树莓派4与stm32f103串口通信,stm32接收信息,stm32f103代码
好的,下面是一个用于STM32F103与树莓派4串口通信的接收代码示例:
```c
#include "stm32f10x.h"
#include <stdio.h>
#define BUFFER_SIZE 100
char rx_buffer[BUFFER_SIZE];
uint8_t rx_index = 0;
uint8_t rx_data_available = 0;
void USART1_IRQHandler(void) {
if (USART_GetITStatus(USART1, USART_IT_RXNE) != RESET) {
rx_buffer[rx_index] = USART_ReceiveData(USART1);
rx_index++;
if (rx_index >= BUFFER_SIZE) {
rx_index = 0; // Reset buffer index if it exceeds the buffer size
}
rx_data_available = 1;
}
}
void USART1_Init(void) {
GPIO_InitTypeDef GPIO_InitStruct;
USART_InitTypeDef USART_InitStruct;
NVIC_InitTypeDef NVIC_InitStruct;
// Enable clock for USART1 and GPIOA
RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1 | RCC_APB2Periph_GPIOA, ENABLE);
// Configure pins for USART1
GPIO_InitStruct.GPIO_Pin = GPIO_Pin_9;***
条件1.使用stm32f103c8t6,c语言编程条件2.使用PA1,PA2,PA3,PA4,PA5,PA6配置成上拉输入,根据6个引脚的电平高低生成。例如000000表示6引脚电平全为0,并使用串口1以字符串形式发送该二进制数到PC端。统计该二进制数中0的次数记作zeo_count;条件3.配置PA11引脚为下拉输入;条件3.串口1使用中断接收数据,帧头FF,结束符0X0D,0X0A.帧头不是FF则重新接收,不以0X0D,0X0A结束符则重新接收;条件4.若PA11电平为0或者串口1没有接收到数据,则记录1分钟内条件2中的最大值zeo_count;记作zeo_count_max;条件5.若zeo_count_max大于zeo_count,打开蜂鸣器;若zeo_count_max小于等于zeo_count,则zeo_count_max==zeo_count;条件6.若PA11电平为1且串口1接收数据不为空,则若串口接收字符串为"1",关闭蜂鸣器;若串口接收字符串为"2",打开蜂鸣器;则若串口接收字符串为"3"且条件2中zeo_count=1,则发送字符串"拿取数量正确",否则发送拿取数量异常;则若串口接收字符串为"4"且条件2中zeo_count=2,则发送字符串"拿取数量正确",否则发送拿取数量异常;则若串口接收字符串为"5"且条件2中zeo_count=3,则发送字符串"拿取数量正确",否则发送拿取数量异常; 则若串口接收字符串为"6"且条件2中zeo_count=4,则发送字符串"拿取数量正确",否则发送拿取数量异常;则若串口接收字符串为"7"且条件2中zeo_count=5,则发送字符串"拿取数量正确",否则发送拿取数量异常;则若串口接收字符串为"8"且条件2中zeo_count=6,则发送字符串"拿取数量正确",否则发送拿取数量异常;
我理解你的问题是需要我编写一个程序,根据6个引脚的电平高低生成二进制数,并使用串口1以字符串形式发送该二进制数到PC端。同时,需要统计该二进制数中0的次数记作zeo_count,并记录1分钟内条件2中的最大值zeo_count_max。如果zeo_count_max大于zeo_count,则打开蜂鸣器;如果zeo_count_max小于等于zeo_count,则zeo_count_max等于zeo_count。如果PA11电平为1且串口1接收数据不为空,则根据接收到的字符串执行相应的操作。
以下是我编写的程序:
```c
#include "stm32f10x.h"
#include "stdio.h"
#include "string.h"
#define MAX_COUNT 60 // 最大计数时间,单位为秒
#define FRAME_HEAD 0xFF // 帧头
#define FRAME_TAIL1 0x0D // 结束符1
#define FRAME_TAIL2 0x0A // 结束符2
GPIO_InitTypeDef GPIO_InitStructure;
USART_InitTypeDef USART_InitStructure;
NVIC_InitTypeDef NVIC_InitStructure;
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
volatile uint32_t tick_count = 0; // 计数器,每秒加1
volatile uint32_t zero_count = 0; // 0的个数
volatile uint32_t zero_count_max = 0; // 最大0的个数
volatile uint8_t receive_buffer[32]; // 接收缓冲区
volatile uint8_t receive_index = 0; // 接收缓冲区索引
volatile uint8_t receive_flag = 0; // 接收标志位
volatile uint8_t buzzer_flag = 0; // 蜂鸣器标志位
void GPIO_Configuration(void)
{
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3 | GPIO_Pin_4 | GPIO_Pin_5 | GPIO_Pin_6;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;
GPIO_Init(GPIOA, &GPIO_InitStructure);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_11;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPD;
GPIO_Init(GPIOA, &GPIO_InitStructure);
}
void USART_Configuration(void)
{
RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE);
USART_InitStructure.USART_BaudRate = 115200;
USART_InitStructure.USART_WordLength = USART_WordLength_8b;
USART_InitStructure.USART_StopBits = USART_StopBits_1;
USART_InitStructure.USART_Parity = USART_Parity_No;
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
USART_Init(USART1, &USART_InitStructure);
NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);
USART_Cmd(USART1, ENABLE);
}
void TIM_Configuration(void)
{
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);
TIM_TimeBaseStructure.TIM_Period = 999;
TIM_TimeBaseStructure.TIM_Prescaler = 7199;
TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure);
TIM_ITConfig(TIM2, TIM_IT_Update, ENABLE);
TIM_Cmd(TIM2, ENABLE);
}
void USART1_IRQHandler(void)
{
if (USART_GetITStatus(USART1, USART_IT_RXNE) != RESET)
{
uint8_t data = USART_ReceiveData(USART1);
if (data == FRAME_HEAD)
{
receive_index = 0;
receive_flag = 0;
}
else if (data == FRAME_TAIL1)
{
receive_flag |= 0x01;
}
else if (data == FRAME_TAIL2)
{
receive_flag |= 0x02;
}
else
{
receive_buffer[receive_index++] = data;
if (receive_index >= sizeof(receive_buffer))
{
receive_index = 0;
receive_flag = 0;
}
}
}
}
void TIM2_IRQHandler(void)
{
if (TIM_GetITStatus(TIM2, TIM_IT_Update) != RESET)
{
tick_count++;
if (tick_count >= MAX_COUNT)
{
if (GPIO_ReadInputDataBit(GPIOA, GPIO_Pin_11) == Bit_RESET || receive_flag == 0)
{
if (zero_count > zero_count_max)
{
zero_count_max = zero_count;
buzzer_flag = 1;
}
else
{
zero_count_max = zero_count;
}
zero_count = 0;
}
tick_count = 0;
}
uint8_t value = 0;
if (GPIO_ReadInputDataBit(GPIOA, GPIO_Pin_1) == Bit_RESET)
{
value |= 0x01;
}
if (GPIO_ReadInputDataBit(GPIOA, GPIO_Pin_2) == Bit_RESET)
{
value |= 0x02;
}
if (GPIO_ReadInputDataBit(GPIOA, GPIO_Pin_3) == Bit_RESET)
{
value |= 0x04;
}
if (GPIO_ReadInputDataBit(GPIOA, GPIO_Pin_4) == Bit_RESET)
{
value |= 0x08;
}
if (GPIO_ReadInputDataBit(GPIOA, GPIO_Pin_5) == Bit_RESET)
{
value |= 0x10;
}
if (GPIO_ReadInputDataBit(GPIOA, GPIO_Pin_6) == Bit_RESET)
{
value |= 0x20;
}
zero_count = __builtin_popcount(value);
char buffer[10];
sprintf(buffer, "%06X", value);
USART_SendData(USART1, buffer);
}
TIM_ClearITPendingBit(TIM2, TIM_IT_Update);
}
int main(void)
{
GPIO_Configuration();
USART_Configuration();
TIM_Configuration();
while (1)
{
if (buzzer_flag)
{
// 打开蜂鸣器
}
else
{
// 关闭蜂鸣器
}
if (receive_flag == 0x03)
{
if (memcmp(receive_buffer, "1", 1) == 0)
{
// 关闭蜂鸣器
}
else if (memcmp(receive_buffer, "2", 1) == 0)
{
// 打开蜂鸣器
}
else if (memcmp(receive_buffer, "3", 1) == 0 && zero_count == 1)
{
USART_SendData(USART1, "拿取数量正确");
}
else if (memcmp(receive_buffer, "4", 1) == 0 && zero_count == 2)
{
USART_SendData(USART1, "拿取数量正确");
}
else if (memcmp(receive_buffer, "5", 1) == 0 && zero_count == 3)
{
USART_SendData(USART1, "拿取数量正确");
}
else if (memcmp(receive_buffer, "6", 1) == 0 && zero_count == 4)
{
USART_SendData(USART1, "拿取数量正确");
}
else if (memcmp(receive_buffer, "7", 1) == 0 && zero_count == 5)
{
USART_SendData(USART1, "拿取数量正确");
}
else if (memcmp(receive_buffer, "8", 1) == 0 && zero_count == 6)
{
USART_SendData(USART1, "拿取数量正确");
}
else
{
USART_SendData(USART1, "拿取数量异常");
}
receive_flag = 0;
}
}
}
```
该程序使用了定时器2来实现计数器功能,每秒钟触发一次中断。在中断处理函数中,读取6个引脚的电平高低,统计0的个数,并将6个引脚的状态以16进制字符串的形式发送到串口1。同时,如果计数器达到1分钟,且PA11电平为0或者串口1没有接收到数据,则记录1分钟内0的最大个数,并根据最大0的个数打开或关闭蜂鸣器。如果PA11电平为1且串口1接收到数据,则根据接收到的字符串执行相应的操作。
请注意,这只是一个简单的示例程序,可能存在一些问题,需要根据实际情况进行修改和优化。
阅读全文